
Evaluation of Distributed
Authentication, Authorization and

Directory Services

Gombás Gábor
programtervez̋o matematikus szak, nappali tagozat

Témavezet̋o: Frohner Ákos

ELTE TTK, 2001.

In the last few years, use of computers in all areas of life became common
and wide spread. Nowadays even the smallest companies have at least a few PC-
category computers. Larger enterprises and universities may have thousands of
computers connected by some kind of network. Maintaining and administering
such systems became a complex issue as the number of administration personnel
is usually far smaller than the number of computers.

The most common requirement for computer networks is central administra-
tion: there is a small number of administrators who manage access control to all
computers. It is often desired that workstations should be easily replacable: in case
of the hardware failure, the failed unit should be replaced with a new one and the
work should continue as soon as possible. The other common criterion is that every
user or some groups of users should be able to use all or some groups of machines.

All the above problems require the existance of some database which holds
certain management information about the valid users and their access permis-
sions. Certain parts of that information should be made available only to their
owner and/or the administrators, so some kind of authentication is also neccessary.
Accessing other resources and services over the network usually also requires au-
thentication. Since there are a wide variety of resources and services available, it
is often desirable if all of them can use the same authentication mechanism.

In this thesis I’m focusing on comparing and evaluating currently available
directory and authentication services. My main focus will be the view of a UNIX
system administrator, but I also try to discuss integration and usability with other
platforms and applications as well.

i

Contents

Contents ii

1 Terms and Definitions 1
1.1 Directory services . 1
1.2 Authentication and authorization services2
1.3 Example . 3

2 Tools 5
2.1 Bootp, DHCP . 5
2.2 NetBIOS, WINS . 6
2.3 DNS, Hesiod . 6
2.4 NIS . 7
2.5 NIS+ . 7
2.6 LDAP . 8
2.7 ActiveDirectory . 10
2.8 Novell Directory Service .10
2.9 Kerberos .10
2.10 Public Key Infrastructure .11
2.11 TACACS+ . 13
2.12 RADIUS . 14
2.13 GSSAPI .14
2.14 SASL . 14

3 Comparison 16
3.1 Objectives .16
3.2 Directory services .17

3.2.1 Design goals and basic principles17
3.2.2 Data model .20
3.2.3 Robustness, availability, scalability23
3.2.4 Supported platforms .28
3.2.5 Authentication, access control, security30
3.2.6 Administration . 33

ii

Contents

3.2.7 Integration with applications35
3.2.8 Summary .35

3.3 Authentication services .36
3.3.1 Design goals and basic principles36
3.3.2 Quality of Service .40
3.3.3 Underlying algorithms41
3.3.4 Scalability, availability 45
3.3.5 Authorization . 46
3.3.6 Supported platforms .48
3.3.7 Integration with applications49
3.3.8 Summary .50

4 Case study 52
4.1 Background .52
4.2 The choice .53
4.3 Implementation and migration problems56
4.4 New services .57

Bibliography 59

Index 64

iii

Chapter 1

Terms and Definitions

1.1 Directory services

Fax is a very common form of media used in transferring business documentation.
If I want to fax a message to someone, I often have to phone the person first to
obtain their fax number, before I can fax the message. British Telecom started to
provide a fax directory service, in order to obviate the need for this ’lookup’ phone
call. However, it was reported in the press during September 1992, that the service
was being withdrawn, due to the administrative overhead associated with keeping
the directory up to date. This leads us to the conclusion that it would be much better
to allow the administration of a global directory to be devolved to the participating
parties, rather than trying to co-ordinate everything centrally.

Computers have similar requirements to people in respect of directory access.
In order to make a connection, or send a message, or whatever the driving appli-
cation requires, the software (and hardware) needs an address to process. Whilst
it would be, and is, possible to provide the application directly with the address
of the remote entity, in practice it is found to be better to provide a level of in-
direction. This is achieved by giving a name to the remote service, computer or
application, and providing the local application with that name. The remote name
to addresslook up is then provided via a table, or a database or a directory. This
shields the local application from changes of address of the remote entity caused
by such things as reconfiguration, replacement of hardware, or migration of a ser-
vice between different nodes in a distributed system. The service which maps the
name into an address, which is in essence identical to the white pages telephone
directory service, has been given various titles such as name server, white pages
etc.

Earlier and simpler versions of directory services was often calledname ser-
vicesor network information services. I will use these names occassionally when
describing services that use these expressions in their native documentation but I
will refer to them as directory services when making general remarks.

Directory services hold all information inentries. Entries may be organized
into tables, maps(maps are basically two coloumn tables with the first coloumn

1

Terms and Definitions Directory services

being the key and the second being the value associated with the key) or atree.
Tables or maps may be organized to higher hierarchies usually calleddomains.
The complete hierarchy is often called anamespacebased on that entries usually
identified by their names.

Both directory and authentication services can be either proprietary or stan-
dardized. In the world of the Internet the main standardization body is theInternet
Engineering Task Force(IETF). There are several IETF working groups working
on different problem areas. These working groups publicate their efforts inInter-
net drafts, which once accepted, can become officialRequest For Comments(RFC)
documents and thusInternet Standards.

1.2 Authentication and authorization services

In the world of computers, a common situation is when one entity (called theclient)
requests some operation to be performed by some other entity (called theserver).
The server normally wants to restrict certain operations to be available to certain
clients only. So there is a need for the client to somehow provide it’s identity to the
server. This process is calledauthentication.

Authentication can be either one-way or two-way. One-way authentication
means that only one participant (usually the client) authenticates itself to the other.
One-way authentication is used if one participant can be identified by other means
(for example, a service running on a well specified port on a host with a known IP
address). Other usage of one-way authentication is common in secure Web access,
where only the server authenticates itself. The idea behind it is that the information
the server provides (or at least the initial part of it) is public, but clients want to
make sure that it really comes from the server they query.

Two-way ormutual authenticationis required when neither parties can be iden-
tified implicitly but trusted communication need to be performed. In this case, both
the client and server identifies itself to each other. This process usually assumes
the presence of some previously known information (public key of the other party)
or a trusted third-party service.

Entities who can be authenticated as are often calledprincipals. A principal
can be a person, a machine or a service. Principals are identified by their name; the
format and the meaning of such names depend on the actual authentication service
being used.

Once a principal is authenticated to a service, the server usually assigns a set
of rights about what that principal is supposed to do. This process is calledautho-
rization. Authentication and authorization are often handled together and some-
times confused. Because authorization depends very much on the service being
requested it is difficult to deal with it generally. Except the case when an authenti-
cation system was designed to work with a specific application or application area,
authorization support is usually restricted to some very basic functionality and in-
dividual applications must implement their authorization policy on their own.

2

Terms and Definitions Authentication and authorization services

Authentication systems are usually built around various crypto algorithms.
There are two classes of crypto algorithms we are interested in:encryption al-
gorithmsand digest algorithms. Encryption algorithms can be used to provide
confidentality: that is, information is disclosed only to users authorized to use it
(knowing how to decrypt it). There aresymmetric encryption(often calledsecret
keyor shared secret) algorithms where the same key can be used both for encryp-
tion and decryption, andasymmetric(also calledpublic key) algorithms where the
key for encryption and decryption is different (they are mathematically related but
computing one from the other is very hard).

Digest algorithms are used to compute a small footprint (called adigestor
hash) that can be used to identify the document. Good digest algorithms have the
feature that it is computationally infeasible to produce two messages having the
same message digest, or to produce any message having a given prespecified target
message digest. This feature makes digest algorithms useful forintegritychecking
(if someone tampers with the stored ot transmitted data, its hash will change) and
digital signatures (so it is enough to encrypt the digest only and not the whole
amount data to be signed). More on cryptography can be found in [BS].

1.3 Example

Figure 1.1: Location of a service

In this example a client wants to use a service offered by a server. Figure 1.1 shows
that the client

1. Acquires the information needed to authenticate itself to the directory. This
step may be optional since information about location of services is usually
public.

3

Terms and Definitions Example

2. Asks the directory for the physical address of the server providing the re-
quested service.

3. When receiving the query, the directory verifies the client’s identity using
the authentication service. This step may be optional too just like the first.

Figure 1.2: Usage of a service

The client then can send its query for the given service. What happens:

1. The client sends a request to the service.

2. The server checks the identity of the client with the help of the authentication
service.

3. The server queries the directory for information needed to perform the re-
quest (this may include retrieving authorization information, locating other
services or retrieving data only).

4. The directory checks the identity of the server (again using the authentication
service) before returning the requested information.

This little example shows how an authentication and a directory service may
interact with each other. Usually all of these interactions are transparent to the user;
the actual methods used can be transparent even to the client and server processes
if they are built using some generic abstraction layer.

4

Chapter 2

Tools

In this chapter I will give a short description of the authentication and directory
services I wish to evaluate in the next chapter. The list is mixed: it contains API
(Application Programming Interface) definitions, protocol definitions and actual
products. I also included two abstraction layers (GSSAPI and SASL) which are
not authentication services themselves, but they are widely used to interact with
actual authentication services and therefore they have great importance.

2.1 Bootp, DHCP

The Bootstrap Protocol (Bootp) and the Dynamic Host Configuration Protocol
(DHCP) are generally not referred to as directory services, but they have some
properties that deserve our attention.

The original Bootp protocol was designed to allow a diskless client machine to
discover its own IP address, the address of a server host, and the name of a file to
be loaded into memory and executed ([RFC951]). Over time, several extensions
was defined to allow other information to be embedded in Bootp responses such as
the name of the client, IP addresses of gateways, name servers, time servers etc.

DHCP is designed to supply DHCP clients with the configuration parameters
defined in the Host Requirements RFCs. After obtaining parameters via DHCP, a
DHCP client should be able to exchange packets with any other host in the Internet
([RFC2131]). From the client’s point of view, the DHCP protocol is an extension
of Bootp. What is new compared to Bootp is the support for dynamically allocated
IP addresses and a standardized extension mechanism.

[RFC2131] states that DHCP allows but does not require the configuration of
client parameters not directly related to the IP protocol. This makes it possible to
extend it to provide additional management information used for setting up a host
during the boot process.

Bootp was widely used for supporting diskless X-terminals and small UNIX
workstations not having enough disks for a local operating system install. DHCP
become popular when the PC-world (dominated by Microsoft software) discovered

5

Tools Bootp, DHCP

the Internet and wanted to be (or at least look like) compatible with existing IP-
based administration tools.

2.2 NetBIOS, WINS

Before the Internet revolution, theNetBIOSservice was the most popular mech-
anism for personal computer networking. NetBIOS is an interface specification
rather than a protocol. Protocols supporting NetBIOS services have been con-
structed on diverse protocol and hardware foundations. Even when the same foun-
dation is used, different implementations may not be able to interoperate unless
they use a common protocol. This situation changed only when the support for the
IP protocol family became more and more common and [RFC1001] finally defined
a protocol standard over TCP and UDP.

NetBIOS was designed to be used by groups of PCs, sharing a broadcast
medium. Both connection-orientated (session) and connectionless (datagram) ser-
vices are provided, and broadcast and multicast are supported. Participants are
identified by name, assignment of names is distributed and highly dynamic.

NetBIOS resources are referenced by name. Lower-level address information
is not available to NetBIOS applications. An application, representing a resource,
registers one or more names that it wishes to use. Management of the allocated
names and location of named resources can be done by each client, or there can
be a central NetBIOS name server (NBNS). The NBNS is often called asWINS
which is the name of the most commonly used NBNS implementation made by
Microsoft.

If there is no NBNS, clients generally use broadcast messages to communi-
cate name registrations and locate resources. Even for relatively small networks
this broadcast traffic may become a performance bottleneck. Using a NBNS this
broadcast traffic can be reduced.

As said above, NetBIOS is used primarily in the PC world in a Microsoft en-
vironment. It is also generally limited to one subnet, though there are methods to
access resources in other subnets. Due to this limitations NetBIOS/WINS is not
a candidate for general directory services. However, it is used nearly everywhere
where Windows-based computers are connected by some local network, so it can-
not be overlooked.

2.3 DNS, Hesiod

In the 1970’s, hosts connected to the ARPANET (predecessor of the Internet) used
a single file calledHOSTS.TXTthat contained the name and address of all hosts.
As the network grew it became apparent that manual maintenance of this file won’t
work in the long run and some other system was needed. This system was turned
out to be what is called theDomain Name System(DNS) today.

6

Tools DNS, Hesiod

The DNS is the most commonly used directory service nowadays. Nearly ev-
erybody who is using the Internet needs the DNS either explicitly or implicitly. It
is defined as an Internet standard by the IETF in [RFC1034] and [RFC1035].

The design of the DNS makes it possible to store arbitrary data in it, not just
name - IP address assignments. This capability was used by the Massachusetts
Institute of Technology (MIT) for creating an information system calledHesiod
using DNS as the database. Hesiod was part of the Athena project just like the
Kerberos authentication service (see below).

Hesiod is essentially a YP-like service which uses the DNS to retrieve informa-
tion about passwd entries, file systems, default printers, and so on - really arbitrary
data stored as text strings. Queries and resource records use the HS class, and data
are stored as TXT RRs. Hesiod is not designed to store security-sensitive data or
support authentication; for these purposes, the Kerberos authentication service was
created.

2.4 NIS

The Network Information System(NIS, formerly known asYellow Pagesor YP)
was originally created by Sun Microsystems in the 1980’s. It was designed to
replace configuration data kept in files in the/etc directory (like/etc/passwd,
/etc/group, /etc/hosts, /etc/services ...) on machines running UNIX oper-
ating systems. It uses theRPC(Remote Procedure Call, also by Sun) interface for
communication between the client and the server.

The main problem with NIS is the lack of security. There is no authentication
so every client can grab the whole database. In the case of password change, both
the old and new password travel unencrypted over the network making it an easy
target for sniffers.

The other thing that makes NIS unsuitable for large networks is that it has a
flat namespace. If two or more NIS domains want to share information, it has to be
duplicated.

NIS stores information in maps. Every map has a single key, so if some in-
formation has to be searched using different keys (e.g. the passwd map must be
searched by name as well as by numeric uid), each key requires a separate map to
be present.

2.5 NIS+

NIS+ is a network name service similar to NIS but with more features. Despite its
name it is not an extension to NIS, it is a new product.

The NIS+ name service is designed to conform to the shape of the organization
that installs it, wrapping itself around the bulges and corners of almost any network
configuration. NIS+ enables you to store information about workstation addresses,
security information, mail information, Ethernet interfaces, and network services

7

Tools NIS+

in central locations where all workstations on a network can have access to it. This
configuration of network information is referred to as the NIS+ namespace.

The NIS+ namespace is hierarchical, and is similar in structure to the UNIX
directory file system. The hierarchical structure allows an NIS+ namespace to be
configured to conform to the logical hierarchy of an organization. The names-
pace’s layout of information is unrelated to its physical arrangement. Thus, an
NIS+ namespace can be divided into multiple domains that can be administered
autonomously. Clients may have access to information in other domains in addi-
tion to their own if they have the appropriate permissions.

NIS+ uses a client-server model to store and have access to the information
contained in an NIS+ namespace. Each domain is supported by a set of servers.
The principal server is called the master server and the backup servers are called
replicas. The network information is stored in 16 standard NIS+ tables in an inter-
nal NIS+ database. Both master and replica servers run NIS+ server software and
both maintain copies of NIS+ tables. Changes made to the NIS+ data on the master
server are incrementally propagated automatically to the replicas ([SOLNAM]).

2.6 LDAP

In the ’80s an effort had begun to create a standardized directory service. The three
largest organizations involved were the International Telecommunication Union -
Telecommunication Standardisation Burean (ITU-T, formerly known asCCITT)
and the International Standards Organisation (ISO) and the European Computer
Manufacturers Association (ECMA). The original problem the ITU-T faced was
that e-mail users need to know the electronic mail address of other e-mail users.
The other two organizations were concerned mainly with providing the name server
service for Open Systems Interconnection (OSI) applications. The two tracks of
development merged in 1986 by forming the Joint ISO/CCITT Working Group on
Directories. The result was the International Standard ISO/IEC 9594-1 commonly
known as ITU-T Recommendation [X.500].

As an aid to understanding what the information looks like, and how it is dis-
tributed and managed, various models are described in the Standard. Each model
presents a simplified view of just one aspect of the Directory information. One
model gives a view of the Directory information, as it is seen by a typical user.
(This was, in fact, the only information model described in the ’88 edition of the
Standard.) This model, the Directory User Information Model, simply called the
Directory Information Model in the ’88 Standard, does not recognise that the Di-
rectory is distributed. From its perspective, there is a large amount of information
held in the Directory, and users can access all of it, providing that they have the ap-
propriate access rights. The Directory Operational and Administrative Information
Model provides the ’administrator’s view’ of the information stored in the Direc-
tory. Administrators ’see’ that there is more information stored in the Directory,
than do typical users. This model still presents the Directory as a global infor-

8

Tools LDAP

mation base, and the distribution of the information between computer systems is
not visible to the model. The Directory User Information Model, and the Direc-
tory Operational and Administrative Information Model, collectively make up the
Directory Information Models.

Another model is concerned with how the information is distributed between
the different computer systems that provide the Directory service. This is the DSA
Information Model. The DSA Information Model describes a model of the in-
formation that needs to be held by a single computer system, in order for it to
co-operate with others in providing a service to users of the Directory.

Figure 2.1: Stored data represented as a tree

The complete set of all information held in the Directory is known as the Di-
rectory Information Base (DIB). The DIB consists of entries, and these entries are
related hierarchically to each other. In the Directory User Information Model, an
entry holds information about an object of interest to users of the Directory. Entries
held in the DIB are structured in a hierarchical manner, using a tree structure. The
DIB can therefore be represented as a Directory Information Tree (DIT), in which
each node in the tree represents a directory entry.

[X.500] had some big problems: first, there were virtually no commercial
implementations. Second, the Directory Access Protocol (DAP) defined in the
standard was defined over the ISO/OSI protocol framework while the world used
TCP/IP. Third, the DAP protocol was rather complicated and required too much
complexity in the clients to implement it. These problems led to the development
of the Lightweight Directory Access Protocol (LDAP) in 1993 at the University
of Michigan. First LDAP was used to access native X.500 directories, however
LDAP proved to be the right tool for many problems outside the X.500 system. It
was found that stand-alone LDAP daemons (those not relying on an X.500 back-
end) could be used for a wide variety of directory based applications. Nowadays

9

Tools LDAP

the word "LDAP" is used not only for the protocol itself but for X.500-based di-
rectory implementations that use LDAP as their native protocol.

Due to this naming inconsistencies, I will use the word "LDAP" to refer to
directory implementations providing a native LDAP interface and I will use the
phrase "LDAP protocol" to refer to the protocol itself if it is not obvious from the
context. I will use the OpenLDAP software for reference implementation.

2.7 ActiveDirectory

Together with Windows2000, Microft has introduced a new concept to the Win-
dows world: the directory. Previous versions of Windows used different methods
to store different data such as network or user information. ActiveDirectory was
designed to unify all information about network objects in one common place. Ac-
tiveDirectory is based on X.500 and LDAP. It has an LDAP interface, although the
schema used by Microsoft is not quite compatible with the LDAPv3 standard.

2.8 Novell Directory Service

The Novell Directory Service (NDS) serves the same purpose for Novell’s Netware
operating system as ActiveDirectory for Windows: it is designed to unify the stor-
age and presentation of information of various network objects. It is also based on
X.500. The NDS protocol is based on the DAP protocol just like LDAP; in fact,
the LDAP interface provided by NDS is basically a simple mapping between the
two protocols.

2.9 Kerberos

In 1983, at the Massachusetts Institute of Technology (MIT) work began on creat-
ing a distributed computing environment to allow users to seamlessly access ser-
vices - it was called the Athena project. For this system to work, a convinient
method of administering users and accessing services in distributed systems was
needed. This need resulted in the creation of a distributed authentication, autho-
rization and accounting service namedKerberos([KRBPLAN]). The first public
version called Kerberos IV was available in 1987. After becoming widely used,
several security problems and design shortcomings shown up. The result was a
redesign and redefinition called Kerberos V which appeared in 1993 [RFC1510].
The first complete reference implementation of Kerberos V was released by MIT
in 1996.

The Kerberos authentication system is based on Needham and Schroeder’s
trusted third-party authentication protocol ([NS]) with modifications suggested by
Dennis and Sacco ([DS]).

10

Tools Kerberos

The authentication process proceeds as follows: A client sends a request to the
authentication server (AS) requesting "credentials" for a given server. The AS re-
sponds with these credentials, encrypted in the client’s key. The credentials consist
of

1. a ticket for the server and

2. a temporary encryption key (often called asession key).

The client transmits the ticket (which contains the client’s identity and a copy of
the session key, all encrypted in the server’s key) to the server. The session key
(now shared by the client and server) is used to authenticate the client, and may
optionally be used to authenticate the server. It may also be used to encrypt further
communication between the two parties or to exchange a separate sub-session key
to be used to encrypt further communication.

There are two methods a client can ask a Kerberos server for credentials. In
the first approach, the client sends a cleartext request for a ticket for the desired
server to the AS. The reply is sent encrypted in the client’s secret key. Usually
this request is for a ticket-granting ticket (TGT) which can later be used with the
ticket-granting server (TGS). In the second method, the client sends a request to
the TGS. The client sends the TGT to the TGS in the same manner as if it were
contacting any other application server which requires Kerberos credentials. The
reply is encrypted in the session key from the TGT.

Once obtained, credentials may be used to verify the identity of the principals
in a transaction, to ensure the integrity of messages exchanged between them, or to
preserve privacy of the messages ([RFC1510]).

2.10 Public Key Infrastructure

The ITU-T Recommendation X.509 (also known as Part 8 of ISO/IEC standard
9594) was developed as part of the directory standardization process mentioned in
section 2.6. The original standard defined the form of authentication information
that can be held in the X.500 directory, how such information can be obtained from
the directory, and how to use this information to perform authentication tasks.

The X.509 standard defined two basic authentication methods: simple pass-
word based, and strong authentication. Strong authentication is based on Public
Key Cryptosystems (PKCS). Public key cryptography requires the distribution of
public keys of the participants. But this is not enough: given a public key, one has
to know if it really belongs to the entity one wants to talk to - in other words, a pub-
lic key and some identification has to be bound together. This task can be solved
by introducing a trusted third-partyCertificate Authority(CA). It is assumed that
the CA has a public key known to all parties that wish to communicate securely.
Therefore, the CA can issue a digitally signed statement called acertificatebinding
the participants’ identity and public key together.

11

Tools Public Key Infrastructure

TheX.509standard defines what information can go into a certificate, and de-
scribes how to write it down (the data format). The third revision (called X.509v3)
was published in 1996 and is being widely used since then. This standard is the
base of some major Public Key Infrastructure (PKI) systems used today.

There are several tasks a PKI has to be able to perform:

Authentication. Communicating parties need a way to verify the identity of each
other.

Integrity. Digital signatures can provide integrity protection: that is, a digital sig-
nature is a proof that a document was produced by the entity having the
secret key for a given certificate and it had not been tampered with during
transport or storage.

Confidentality. Sensitive data has to be secured from unwanted monitoring. This
can be achieved by using data encryption.

Non-repudiation . Especially needed in business applications where it is essential
to have a method to ensure that somebody cannot deny a specific act she did
in the past.

Certificate Authority. Certificates bounding public keys and the identity of their
owners together has to be created and assigned.

Registration Authority. Before assigning a certificate the requestor’s identity has
to be verified. Certificates sometimes need to be revoked before their lifetime
expires and such revocations must be tracked. The Registration Authority is
often integrated with the Certificate Authority.

Certificate Repository. Having certificates is not enough. In order to commu-
nicate involved parties need to know each others’ certificate holding their
public keys. Therefore certificate repositories have to be set up where one
can download the certificate of the entity she wishes to communicate with.

To perform these tasks, several algorithms, protocols, data formats and man-
agement recommendations has to be specified. In 1995, an IETF working group
was formed to develop the neccessary Internet standards to support an X.509-based
PKI. These standards are often named as PKIX standards after the name of the
working group (which name in turn comes from the first letters of Public Key
Infrastructure X.509). The PKIX standards include various portions of other stan-
dards such as the PKCS standard family created by RSA Laboratories.

Bseides PKIX there are other players on the scene as well. Since the com-
parison and analysis of different PKI systems could fill a thesis on its own I will
focus on the PKIX infrastructure only but here I give some short notes about other
systems.

SPKI/SDSI(Simple Public Key Infrastructure/Simple Distributed Security In-
frastructure): This is a PKI which is not based on X.509. Now it is a joint effort

12

Tools Public Key Infrastructure

of the SPKI IETF working group and SDSI, an approach outlined by MIT’s Ron
Rivest and Microsoft’s Butler Lampson. SDSI/SPKI differs from the more devel-
oped and accepted PKIX in specifying a highly distributed, client-focused trust
model relying on delegated human-readable certificates. SDSI/SPKI also is more
flexible than PKIX in letting end users define rules for processing certificates. It
also rejects the complex ASN.1 syntax of X.509. Considerable control is put in the
hands of end users, rather than relying on a centralized infrastructure for establish-
ing identities. The infrastructure also puts an emphasis on short-lived, ephemeral
certificates, reissued daily, for example, in lieu of extensive reliance on CRLs.

SESAME(Secure European System for Applications in a Multi-vendor Envi-
ronment): This is an effort led by Bull, ICL and Siemens to create sophisticated
single sign-on with added distributed access control features and cryptographic
protection of interchanged data. SESAME is a construction kit. It is a set of secu-
rity infrastructure components for product developers. SESAME uses the Kerberos
protocol and some of the Kerberos data structures but also defines its own data
structures. SESAME adds sophisticated access control features and the scalability
of PKI systems to Kerberos. SESAME can be accessed through the GSSAPI with
extensions to support the access control features.

Also there is a possibility to build a PKI around the famous PGP software.
PGP has its own ideas about certificates and signatures and it is widely used for a
long time. Using PGP as a PKI is often overlooked since it is not blessed by big
standardization entities but uses much more informal definitions only. The PGP
model has no need for central authorities but uses the "web of trust" method where
everybody can decide who to trust and how much to trust. There are some short
comings of PGP of course: since it was designed from the beginning to help secure
messaging, it cannot be easily used for other purposes like strong authentication.

2.11 TACACS+

TACACS (Terminal Access Controller Access System) was designed by BBN to
provide a centralized authentication, authorization and accounting facility. It has
three major variants: TACACS, XTATACS and TACACS+. XTACACS is an exten-
sion of the original TACACS protocol, while TACACS+ is a new protocol devel-
oped by Cisco ([RFC1492]). The TACACS protocols are used mainly in network-
ing devices such as routers, terminal servers and dial-in servers. From the above
three variants TACACS+ has the most features so I will focus on it from now on.

In TACACS+, the authentication, authorization and accounting (AAA) services
can be provided by the same or by different servers, using either the same or dif-
ferent databases for each. It is possible for example to exchange the authentication
protocol with Kerberos and only use the authorization and accounting parts.

13

Tools RADIUS

2.12 RADIUS

RADIUS(Remote Authentication Dial In User Service, [RFC2865]) was designed
primarily for managing dispersed serial line and modem pools with a large number
of users. RADIUS can authenticate a user and if it was successful, return config-
uration information specific to that user’s session. The RADIUS protocol defines
an easy way to add vendor extensions. This has several advantages because inte-
grating new technologies and features is easy and the base protocol does not need
to be revised. But it can also become a problem when different vendors start using
the same extension for different purposes so interoperability can become difficult.

2.13 GSSAPI

TheGSSAPI(Generic Security Services Application Programming Interface) is a
generic API for doing client-server authentication. The motivation was that every
security system had it’s own API, and the effort involved adding different secu-
rity systems to applications is extremely difficult with the variance between secu-
rity APIs. However, with a common API, application vendors could write to the
generic API and it could work with any number of security systems. Programs
using the GSSAPI therefore can be highly portable, not only from one platform
to another, but from one security setup to another and from one transport proto-
col to another. The GSSAPI provides several levels of data protection, consistent
with the underlying security mechanism that have been implemented on a system
([SOLGSS]).

The operational paradigm in which GSSAPI operates is as follows. A typical
GSSAPI caller is itself a communications protocol, calling on GSSAPI in order
to protect its communications with authentication, integrity, and/or confidentality
security services. A GSSAPI caller accepts tokens provided to it by its local GSS-
API implementation and transfers the tokens to a peer on a remote system; that peer
passes the received tokens to its local GSSAPI implementation for processing. The
security services available through GSSAPI in this fashion are implementable (and
have been implemented) over a range of underlying mechanisms based on secret-
key and public-key cryptographic technologies.

The GSSAPI is defined in an abstract manner in [RFC2743]. Separate RFCs
define the mapping of this abstract API to actual C and Java interface definitions
and data types. The abstract definition makes it easy to implement the GSSAPI in
other languages while the language-specific definitions ensure that different GSS-
API implementations will be binary compatible with all applications.

2.14 SASL

SASL(Simple Authentication and Security Layer) is a generic protocol framework
for doing various sorts of authentication between clients and server. In SASL ter-

14

Tools SASL

mology, application protocols such as POP, IMAP, and SMTP specify a "SASL
profile," which describes how to encapsulate SASL negotiation and SASL mes-
sages for that protocol. Different authentication schemes are called "mechanisms"
in the SASL framework. The result is an abstraction layer between protocols and
authentication mechanisms such that any SASL-compatible authentication mecha-
nism can be used with any SASL-compatible protocol.

The standard SASL security mechanisms include the use of standard password
based authentication (PLAIN), one-time passwords (OTP), GSSAPI/Kerberos, and
X.509 PKI.

15

Chapter 3

Comparison

3.1 Objectives

There are several objectives to consider when evaluating and comparing different
systems. The first thing is the purpose a specific system was designed for as this
can be the major hint if the service can be used to solve a given problem or not.
But new problems emerge every day and many of them can be solved using exist-
ing techniques. Understanding the existing solutions may provide guidelines for
choosing existing products to solve problems that they were not designed for -
simply because nobody thought about usability for that particular problem before.

The design goal is a very important but hardly measurable thing. It can help to
narrow the list of possible solutions but there are a number of other objectives that
has to be considered before making a decision:

1. The abstract mathematical model or models realized by a product. This in-
cludes the data model in the case of a directory service or the security model
behind an authentication service. Obviously the problem one wants to solve
must be possible to map to this model in order to have a chance for success.

2. Robustness and scalability. When planning a system, requirements about
availability and error recovery have to be determined. The planned size
and complexity of the system is also important. These parameters must be
confronted first with the previously mentioned model’s capabilities and then
with the actual limits of the existing implementations.

3. Security. The times when the Internet was a place of cooperation have long
gone and today’s world requires the use of sophisticated techniques to protect
properties and resources made available on the network. There is a wide
range of security architectures. After the security requirements of a planned
system are determined, one has to choose from the available solutions based
on their applicability and interoperability with other parts of the system as
well.

16

Comparison Objectives

4. Supported platforms. In most cases people want to use existing solutions
rather than inventing their own. The rationale behind this is that develop-
ing a new directory or authentication service is a very hard job requiring
significant researcher and developer resources which few organizations or
companies can afford. Using an already existing solution requires the avail-
ability of that product for the platforms the organization or company wishes
to use.

5. Integration with other products. When designing the basic framework of
directory and authentication services for a company or organization, it is
important to investigate the possibilities of integrating the possible solu-
tion candidates with other applications and services in the future. Today the
whole IT technology is changing rapidly and a more flexible solution might
be useful if a new technology or service has to be supported in the future. Of
course genericity usually is not free, its price has to be paid often by smaller
performance or larger maintenance costs.

There may be other aspects when selecting between different solutions like
policy decisions (all products must or may not come from a given set of vendors
etc.). These are not covered here but in a given situation they may have as much or
even greater significance as the objectives mentioned above.

3.2 Directory services

3.2.1 Design goals and basic principles

Generally it’s a good advice not to use a software for a task it was not designed for.
However, for general purpose products like some directory services, one may find
interesting alternative usages with a little intuition.

Directory services can be either general or specialized. A general directory
service like LDAP usually is more flexible and can be used for solving a much
wider variety of problems than a specialized directory service, with the downside
of usually being more resource-hungry. Specialization by itself does not mean that
the directory service can not be used for other purposes as well - this is nicely
demonstrated by Hesiod.

The Bootp and its successor the DHCP protocol was created to help the booting
process of workstations connected to a network. The idea was to maintain config-
uration information required for starting the machine (such as where to load the
operating system from) and basic networking parameters (such as IP address, net-
mask, addresses of gateways etc.). The original Bootp protocol was defined with
mostly diskless X-terminals and workstations using UNIX-like operating systems
in mind and was designed to work with a static configuration only. DHCP provides
better support for other platforms like Windows and also has the capability to dy-
namically assign resources to newly attached hosts through a leasing mechanism.

17

Comparison Directory services

The Domain Name System was designed to provide a distributed database
for mapping host names to network addresses. It was needed because the pre-
vious method of having one big data file manually distributed was becoming un-
managable. The DNS offered a solution for dividing the network for smaller logical
parts not neccessarily following the physical topology. These smaller parts were
calleddomainsand could have an administration on their own.

The DNS was designed to support a slowly changing database. Because chan-
ges are supposed to be infrequent, answers to previous queries can be cached lo-
cally for a long time which saves bandwidth and improves performance.

Figure 3.1: Caching the remote server’s answer improves performance

Apart from name and address information, the DNS provides methods to store
arbitrary data in it. This capability was used by MIT when they created Hesiod.
Hesiod was meant to be a free alternative to other existing technologies such as
Sun’s Yellow Pages (also known as NIS). MIT wanted a system that could be freely
distributed and could cope with the expected growth of the network in the next
several years. They have choosen the DNS as a base because it had some very
attractive features like the hierarchical namespace, the ability to delegate authority
to subsidiary name servers and the ability to take advantage of local caching to
improve performance.

Hesiod was designed to be a general database without knowledge about the
stored information. It offers a content-addressible memory where certain strings
can be mapped to others depending on the query. Hesiod has no knowledge about
the data it stores, queries and responses are simple key/content interactions (as
defined in [HESIOD]). Hesiod was designed for data that changes infrequently and
must be accessed quickly. It can handle only small amounts of data per query so it
is not suitable to be used as a general database. Hesiod has no interface to modify
the data directly but relies on external maintenance and administration facilities.

NIS was created by Sun to replace the regular ascii files on UNIX machines
that hold configuration information about users and services (like/etc/passwd,
/etc/services and so on). The intent was to create an environment where these
information can be kept and maintained on a central server and distributed to sev-

18

Comparison Directory services

eral clients. The need for such a distributed system emerged shortly after the in-
troduction of the Network File Service (NFS). NFS - like any other file system -
uses numerical user identifiers and not names to identify users so if a filesystem
has to be shared between different machines these machines has to agree on the
user identifiers. The same goes for group identifiers too. Other than centralizing
user management, NIS has the feature of storing data in hashed databases instead
of flat text files which can speed up lookups if the case of a very large number of
users. The tradeoff is the increased network traffic since NIS does not cache data.

NIS+ meant to be used for the same purposes as NIS but has several advantages
over it. While the NIS namespace consists of independent flat domains, the NIS+
namespace is hierarchical. This allows splitting up a large network environment
based on organizational boundaries. NIS supports one key per map only while
NIS+ tables can have multiple keys thus eliminating data duplication. NIS+ offers
advanced security features like authentication and access control which NIS does
not have.

LDAP is based on the X.500 ([X.500]) directory standard. Originally it was
meant to be a protocol that can be used in the TCP/IP world to access X.500 direc-
tories but it soon started to live on its own. Contrary to the previously mentioned
directory services, LDAP meant to be generic without a specific predefined appli-
cation area. The original intent behind X.500 was to provide a directory service for
used mainly by humans to locate certain information. The original DAP protocol
was complicated and hard to implement and required a full ISO/OSI protocol stack
which is generally not available because the Internet is based on TCP/IP.

When native LDAP directory services have arrived it became possible to use
it for low-level name services too and such applications soon emerged. For UNIX
systems, [RFC2307] provides a schema recommendation which can be used to
replace existing NIS and NIS+ implementations. There are both free and commer-
cial products available that can automate the transition from NIS or NIS+ to LDAP
(provided that you are not using proprietary solutions such as non-standard NIS+
tables).

Novell have choosen the same route on the creation of NDS as the creators of
LDAP did. NDS is based on the X.500 standard just like LDAP and was aimed
to provide a simpler and faster service than X.500. Novell wanted NDS to replace
their previous information and management systems for their Netware operating
system and later extended it to be able to store information about an entire en-
terprise network. When LDAP become popular, Novell voted to move into the
direction of LDAP and made NDS compatible with it. This resulted in a change
of NDS’ goals: besides providing low-level name services to the operating sys-
tem, more and more focus was given to high-level application integration in the
e-business field.

When seeing how successful X.500 based directories became and understand-
ing their advantages in centralized system management as well as in business ap-
plications, Microsoft realized that it must move in this direction too. The domain
model that Windows NT previously used proved to be inadequate for large net-

19

Comparison Directory services

works since it lacked very important features such as object hierarchy, extensi-
ble schema and data distribution strategy. Also, the proprietary solutions used for
managing NT domains made it very hard to integrate it with non-Windows envi-
ronments. The solution for these problems was the creation of ActiveDirectory,
which uses DNS domains instead of the NT domains, provides X.500-based object
naming and uses LDAP as it’s communication protocol.

3.2.2 Data model

When evaluating a directory service, one of the most important aspects is the way
it represents data. This includes what kind of data can it handle, how is it organized
and how can it be retrieved.

There are three main data models used by directory services:flat, hierarchical
andtree. The flat model (also calledflat namespace) stores data in tables or maps
which have no connection to each other. The data that can be stored in a table
or map is usually key-value pairs requiring keys to be unique and the usual query
methods being "get the value for key x" or "get all values". The set of tables that
make up a separate database is often called adomain. Domains can have names
and there may be more than one domain in a system, but these domains and their
names has no connection with each other.

Figure 3.2: NIS: flat namespace

Thehierarchicalmodel (orhierarchical namespace) is an extension of the flat
model. This model can be described as having several flat domains linked together
usually in a tree. The classic analog for the hierarchical data model is the file
system in UNIX-like operating systems: there are directories representing the do-
mains and files representing the tables that contain the actual data. Domains can be
named by their path to the root of the tree just like in the file system. Directory ser-
vices using hierarchical data models usually make it possible to create some kind
of relationship (either implicitly or explicitly) between different domains and/or
tables inside these domains.

The third main data model is thetree model ortree namespaceand it is the
most generic. This model consists of objects linked in a tree structure. There
is no predefined meaning of objects at specific parts of the tree, and each object

20

Comparison Directory services

Figure 3.3: NIS+: hierarchical namespace

can contain information. This is unlike the hierarchical model where only tables
residing in leaves of the tree structure contain information.

In the tree model, each object has its own (or relative) name. The whole name
of the object is the path to the root of the directory, just like in the hierarchical
model. Most directories support links or aliases to create shortcuts to avoid unnec-
cessary data duplication. This can result in objects having more than one whole
name and the graph of the data not actually being a tree but rather a directed graph
without a directed circle (in theory, creating directed circles is also possible, but it
is usually prohibited as it would serve no useful purposes).

Figure 3.4: LDAP tree structure with a reference

Bootp/DHCP, NetBIOS/WINS and NIS all have flat namespaces. Bootp/DHCP
and WINS do not even have the notion of domains or tables. They can do a single
key-based lookup returning an information record associated with the key. While
the Bootp/DHCP database is read-only, the WINS database can be dynamically
changed as hosts register or deregister shared resources.

21

Comparison Directory services

NIS has the notion of domains and maps. A domain consists of a set of maps
and a map is basically a two-coloumn table, where the first coloumn is the search-
able key and the second coloumn is the data associated with that key. So if some in-
formation needs to be accessed by more than one key then it must be stored in more
than one maps. Duplicated maps are often named as the type of the stored informa-
tion followed by the name of the key separated by a period (likepasswd.byname
or passwd.byuid). NIS tables are read-only.

NIS+ uses a hierarchical namespace which gives it several advantages over NIS
- especially in large and complex network environments. Contrary to NIS, tables
in NIS+ may contain more than two coloumns and any number of coloumns can be
searchable. The full key of a row is the concatenation of the values in all searchable
coloumns, and this must be unique - one searchable coloumn can contain the same
value multiple times (provided that there are at least two searchable coloumns).

Tables in NIS+ has a special feature called concatenation path. It is used by
search operations: if a key is not found in the actual table, tables listed in the
concatenation path will also be searched. This makes it possible in large network
environments that common information (like normal users) is only stored at the
top level of the hierarchy and lower level domains contain information only that is
specific to that domain. From the administrative viewpoint this is a nifty feature
that can make system and network administration quite convinient.

DNS is often referred as having a hierarchical structure but by our above defini-
tions DNS falls into the tree model category because not only the leaf nodes (in this
case, host names) can have information (resource records) associated with them,
but also the internal nodes (domain names). The tree is partitioned intozones; each
zone starts at a domain boundary and extends downwards to leaf nodes or other
zone boundaries. Resource records have a type parameter and a value. When do-
ing a query, the client can specify what resource types is it interested in about a
given name. There is a possibility for querying all entries of a zone but this capa-
bility is often administratively restricted to master-slave server communication and
is not available to ordinary clients.

The DNS has support for pointers (PTR records) that can link different parts
of the tree and aliases (CNAME records) which provide alternate names for nodes
in the tree.CNAME records are meant to be used in general whilePTR records are
meant to be used with special domains only like theIN-ADDR.ARPA. domain used
for reverse lookups.

The original assumption about the DNS was that it is a mostly static database
with changes made externally by editing configuration files. This assumption be-
came problematic when DHCP become widely used. If the machine of Bob got
a dynamic IP address and he wanted to tell Alice to use some service from his
machine, he could not tell her the name of his machine because the name servers
had no knowledge about what IP address does he got. For these reasons a protocol
extension for dynamic updates was defined in [RFC2136]. This extension allows
atomic updates bound to specific prerequisities.

[X.500] defines several models of the directory including information, opera-

22

Comparison Directory services

tional and administrative models. These models are also used by other directory
services based on X.500 like LDAP, ActiveDirectory or NDS.

In X.500, the main concept of the information model is theentry (the corre-
sponding term in the case of the DNS is the resource record). Entries are named
collections of attributes. Attributes have a type and one or mode values, with an
associated syntax defining allowed information. The range of required and allowed
attributes are defined by a special attribute calledobjectClass. Each entry has ex-
actly one structural object class but may have zero or more auxiliary object classes.
The union of required and allowed attributes by each object class make up the set
of requred and allowed attributes of the entry.

The [X.500] naming model describes how objects are represented in the direc-
tory. It is a tree model as defined in the beginning of this section. Each object has
aRelative Distinguished Name(RDN) which is one or more (usually one) selected
attribute/value pair of that entry. The fullDistinguished Name(DN) of an object is
made up by the RDNs of the objects in the path to the root of the directory tree.

One big advantage of X.500-based directory services over DNS is the modifi-
able schema. The DNS only allows a predefined set of resource records. Some of
these records can hold arbitrary information but it is left totally to the client how to
interpret it. In X.500 the structure of information about an entry can be expressed
by using attributes and object classes.

The other advantage of X.500 over DNS is the wide range of supported oper-
ations. These include powerful search and comparison capabilities as well as add,
delete and modify operations. The search functions can be used to locate entries
satisfying a given search filter criterion in a subtree of the directory. This subtree
can span across multiple servers which makes it easy to repartition a directory if
the amount of data grows such that one server can not handle it.

All X.500-based directory services have support for splitting the directory tree
they serve to smaller parts and having different servers serve different parts. Such a
subtree is often called apartition (the equivalent of a DNS zone). Partition bound-
aries are often indicate organizational boundaries.

3.2.3 Robustness, availability, scalability

In most cases directory services are critical components of the network environ-
ment. If they fail, computers will not be able to boot, users cannot log in, e-mails
do not get delivered and so on. When evaluating the robustness of a given directory
service, several aspects has to be considered:

Replication. There are companies guaranteeing 99.9% availability for both of
their hardware and software, but these solutions are rather expensive and
even these solutions can fail eventually. So it is essential that a core service
like a directory should not run on one machine only but have one or more
replicas. If one server fails, the others can take over and provide continuous
service without clients even noticing the failure.

23

Comparison Directory services

Figure 3.5: Replication improves scalability and reliability

Replicas can be eitherread-onlyor read-write. In a read-only replica setup,
replicas handle data queries only, and one master server handles all the up-
dates. It has the advantage that it can be easily implemented but it has the
obvious disadvantage of placing all responsibility in making updates on a
single server. This provides asingle point of failurewhich can be unaccept-
able in some situations. Performace issues (the load for all updates is placed
on one server, see below) can also arise.

Using read-write replicas has the advantage of eliminating the single point of
failure and also solves the performance problems. The disadvantage is that
read-write replication is hard to implement right. If clients are allowed to
access more than one servers at the same time and they make modifications
on more than one servers at the same time, the modifications may conflict
and resolving such conflicts can be challenging.

Failover. Having replicas is not enough. If one server fails, clients should be able
to automatically switch to another server. If it is not the case and admin-
istrative intervention is required to replace the faulty server, it can cause
noticable downtime which can be measured in lost money if the service is
business-critical.

Availability. As already mentioned earlier, directory services can be an essential
part of a network setup. This means that the service must have a high avail-
ability ratio. Replication was already mentioned, but it is also important that
the directory should not go offline for reconfiguration or backups.

Scalability. The amount of data a directory service has to handle can be very big
and tends to grow over time. It may be impossible or inefficient to keep all
data on one server only because the hardware required to handle the amount
of data and/or the amount of client requests needed may be too expensive.

24

Comparison Directory services

Figure 3.6: Failover on server failure

Latency can also be a problem: if the directory needs to be used over slow
network connections the response times may be bad even if the server itself
is fast. These problems can be resolved by putting a server near the clients
(according to network topology) thus eliminating the need to use the slow
connection.

Service replication failover database size clients
Bootp/DHCP no yes 100 100
NetBIOS/WINS no yes 100 100
DNS/Hesiod r/o yes 10,000 1000
NIS r/o yes 1000 100
NIS+ r/o yes 10,000 1000
LDAP r/o yes 10,000,000 1000
ActiveDirectory r/w yes 10,000,000 1000
NDS r/w yes 100,000,000 10,000

Table 3.1: Replication capabilities and estimated scalability limits

Table 3.1 summarizes the capabilities of directory services. The database size
means the number of entries a single server can handle on the proper hardware. The
clients coloumn contains the number of clients the service is designed to handle
easily. Both numbers are meant as a magnitude estimation only since they can vary
(even significantly) between implementations and installations.

As to be seen, every directory service has failover capabilities. In the case of
Bootp/DHCP it is achieved by the client sending a broadcast request and using the
server that happened to answer first. NetBIOS clients can also operate in broad-
cast mode when the answer coming from the fastest server will be used, or it can
be configured to try to use a specified set of servers in the order they are listed.
The main difference between Bootp/DHCP and WINS is that while the former is
normally used for boot-time configuration, the latter is used every time a network

25

Comparison Directory services

resource needs to be located. So while broadcasting is fine for the Bootp/DHCP
protocol, in the case of NetBIOS broadcast traffic can cause noticable performance
problems even in relatively small networks.

Bootp/DHCP and WINS do not have replication capabilities. The former has
a static database defined by a configuration file which must be transferred to other
servers manually, the latter is a dynamic service where clients register themselves
if they want to be found by other entities.

One of the big enchanchments of DHCP over Bootp is the capability of dy-
namic resource allocation. Bootp was designed to have a static configuration
database defined on the server while DHCP can automatically assign resources
such as IP addresses from a list as new hosts are attached. This makes DHCP ca-
pable to handle bigger network environments where adding or removing hosts is
common so maintaining a static database would be hard. DHCP can also be very
useful if the usable IP address range for some reason is smaller than the number of
possible hosts but these hosts are not used in the same time. By using small lease
periods a newly attached host can reuse the IP address of a host that was detached
from the network earlier.

The DNS is one of the most heavily used distributed databases. It is the base of
nearly all human-controlled internet services because people do not like to remem-
ber numeric addresses but want to use meaningful names wherever possible. It has
a classic read-only master-slave replication model with a static (not modified by
clients) database (although there is a dynamic DNS update protocol but not many
vendors are using it). Because of these characteristics DNS seemed to be a good
basis for a more general directory service at the time people at MIT designed Hes-
iod. There were some shortages: due to the DNS protocol, a very restricted limit
(512 bytes) was imposed on the data the server can return for a given query.

In the case of NIS, there are one master server for each NIS domain, and there
can be any number of slaves. When performing queries, the server that answers
first to an initial broadcast request will be used. All changes happen on the master
server. The basics for NIS+ are similar, but the preference of the NIS+ servers can
be configured centrally. Servers with the same preference will be used in random
order. Talking about scalability, NIS can handle a couple hundred of users eas-
ily but there are existing setups with several thousand entries. NIS+ is officially
claimed to efficiently handle about 10,000 entries in a domain having no more than
10 replicas and about 1000 clients.

One of the big drawbacks of NIS is that the database can not be updated di-
rectly. The original sources of the maps are kept on the master server in text format
and modifications are made to those files. The master server regularly sends out
the new version of the maps to all replicas. This causes considerable network and
performance drawbacks since the master sends the whole database to each slave
every time, there is no method for incremental updates. It also means that updates
have noticable and sometimes inconvinient delays.

NIS+ addresses the shortcomings of NIS mentioned above: there are direct
ways to update the database eliminating the need to constantly convert from a

26

Comparison Directory services

source format. Updates are incremental and are sent to replicas almost immediately
so problems resulting from replica inconsistencies do not cause so much trouble.
Incremental updates also result in lower bandwidth and CPU requirements.

The LDAP protocol itself does not define failover or replication. LDAP clients
generally accept a list of servers to use for queries and will try the servers in the
order they are listed until one responds. Another method for achieving failover is to
use DNS tricks like multiple IP addresses bound to the same name; applications are
expected to try the given addresses in the order they got them from the name server
until one succeeds. The problem with the latter approach is that it is a notorius bug
that many applications can not handle properly the case of multiple addresses per
one host.

A standard replication protocol for LDAP (called LDUP) is being currently
worked on but has not been finalized yet. OpenLDAP provides a simple replica-
tion scheme: changes in each partition can be sent to a given list of servers. It
can not restrict replication to subtrees of a partition nor can it filter the list of at-
tributes being sent to a replica. This is clearly a field when OpenLDAP falls behind
commercial directory services. Currently OpenLDAP officially supports read-only
replication only but the development version has support for read-write replica-
tion (calledmultimastermode) as well. The importance of multimaster support
increases significantly if somebody wants to build a high-availability environment.
Read-only replicas can solve the case of information availability when a server
fails, but they do not provide any help when a client wants to perform an update on
the directory but the master server is not available.

With NDS, replication can be configured per partition. The NDS terminology
calls an instance of a partition areplica. Each server can hold one or more replica,
but every instance of a partition must be on a different server. Each partition has
a master replica (by default on the server that created the partition) and can have
several read-write and read-only replicas. Read-write replicas can help to make
updates faster if there are slow WAN connections in the network, but they also
generate more traffic due to the required synchronization. Read-only replicas can
be used to speed up queries.

NDS only guarantees loose consistency meaning that replicas are not guaran-
teed to hold the most recent changes to the directory at any specific moment, but
the database is guaranteed to synchronize eventually. Changes get propagated to
other replicas using predetermined paths. This is possible because every replica
has definite knowledge of all other replicas so it can calculate the full topology and
can send changes to neighbour replicas only.

ActiveDirectory also has the notation of partitions just like NDS or OpenLDAP.
Replicas can be either full read-write or partial read-only. Partial replication means
that the replica does not contain all attributes of replicated objects but only a filtered
subset. Apart from some minor differences NDS and ActiveDirectory has quite
similar replication capabilities.

OpenLDAP, NDS and ActiveDirectory all share the feature that only the actual
changes get replicated, not whole objects. This has obvious performance bene-

27

Comparison Directory services

fits and also reduces the chance and scope of conflicts in the case when a client
performs modifications on more than one read-write replica.

3.2.4 Supported platforms

There are two main platform groups that I consider: UNIX-like systems and Win-
dows. Other operating systems are not so widespread and their usage is usually lim-
ited to specific tasks that do not require integration with generic directory services.
Of course there are directory implementations for VMS and IBM mainframes, but
I do not want to cover them.

Table 3.2 summarizes the availability of server and client implementations of
various directory services.

Service server platform client platform
Bootp/DHCP UNIX, Windows UNIX, Windows
NetBIOS/WINS UNIX, Windows Windows
DNS UNIX, Windows UNIX, Windows
Hesiod UNIX, Windows UNIX
NIS UNIX UNIX
NIS+ UNIX UNIX
LDAP UNIX, Windows UNIX
ActiveDirectory Windows UNIX, Windows
NDS UNIX, Windows UNIX, Windows

Table 3.2: Availability on different platforms

Bootp/DHCP server and client implementations exist for both UNIX and Win-
dows. Windows has the DHCP service built-in. There are UNIX systems that come
with Bootp/DHCP support bundled with the operating system but there is a freely
available implementation made by the Internet Software Consortium (ISC) that can
be used on all recent UNIX variants. There are hardware that supports the Bootp
protocol even before the operating system is loaded; this support makes it possible
to boot the operating system from the network instead of a local device. That’s how
diskless systems work. Even ordinary PCs can be made work as diskless worksta-
tions with the addition of a boot EPROM. Nearly all network cards has a socket for
inserting such an EPROM module to be used during boot, and there is a free boot
EPROM building kit available called Etherboot.

NetBIOS is the protocol of the DOS/Windows era. Recent Windows versions
can run completely over TCP instead of NetBIOS but the WINS service is still
essential for resource sharing and browsing. For the UNIX world, there is an open
source implementation available in the Samba package. It can act as either a server
for Windows systems or as a client for accessing Windows shares. In theory Samba
could be used between two UNIX systems to share data but it is rarely used that
way.

28

Comparison Directory services

The most commonly used directory service nowadays is undoubtedly the DNS.
If a computer claims Internet support, then it has at least basic support for the DNS
too. Server implementations exist for nearly all operating systems. The Hesiod
system that was implemented on top of the DNS has much smaller popularity. It
was designed to work on UNIX-like systems only but it did not get very popular.
There are some Hesiod configurations in use today but their number is decreasing.
It is unlikely that newly emerging platforms will have Hesiod support in the future.

NIS and NIS+ both belong to the UNIX world. NIS being the older and simpler
got wide acceptance, nearly all existing UNIX variants support it. There are differ-
ences between implementations since NIS is not standardized but such differences
usually does not harm interoperability (it is possible that some more advanced fea-
tures could not be used in a diverse environment, but the basic functionality should
work). NIS+ does not have such a wide range of support. NIS+ client implementa-
tions exist for Solaris, Linux, AIX and FreeBSD; server implementations exist for
Solaris, AIX and BSD. IBM has licensed the NIS+ code that come with Solaris 2.5
and included it in its AIX operating system. They did not update the documentation
properly so the IBM NIS+ documentation still has a reference to Solaris 2.5...

The most painful thing about NIS+ is the lack of server support for Linux.
Although the FreeBSD server implementation can be compiled with some effort,
it is known to have problems and is not suitable for production use. The other
shortcoming is the security part: only the NIS+ version included in Solaris 7 or
higher has security measures that are considered sufficiently strong (see section
3.2.5). And if the strong security mode is enabled on the server, older clients (such
as the implementations for other operating systems) can no longer use it.

LDAP servers are available for both Windows and UNIX platforms. ActiveDi-
rectory and NDS also has LDAP support. For UNIX systems, [RFC2307] defines
a suggested schema to use for providing network information services via LDAP
instead of NIS or NIS+. Support for information retrieval based on this schema
is available for several operating systems such as Linux, Solaris, AIX and so on.
Since LDAP is becoming more and more popular it is expected that major OS
vendors will have some kind of support for it in the near future.

Microsoft’s marketing information claims full LDAPv3 support in ActiveDi-
rectory which is actually not the case. The schema ActiveDirectory currently uses
is not compatible with the one defined in the LDAPv3 standard ([RFC2256]) so
UNIX clients may have difficulty when using ActiveDirectory as an LDAP server.
The opposite direction is even worse: since several Windows services has not been
converted to use the LDAP protocol but talk to ActiveDirectory using the old Mi-
crosoft IPC mechanisms, it is not possible to use a generic LDAP server instead
of ActiveDirectory. There are problems with authentication too: ActiveDirectory
includes Kerberos support but Microsoft has added its own extensions to the Ker-
beros protocol so Windows clients can not use ActiveDirectory objects if they au-
thenticate using a third party KDC instead of the one built into ActiveDirectory.

The main problem with LDAP-compatible directory services is already men-
tioned in the previous section: there is no standard replication protocol so inte-

29

Comparison Directory services

grating directory service products from different vendors can be difficult. If the
currently proposed LDUP protocol gets accepted as a standard and vendors start
implement it (NDS already claims conformance to the published draft) the situa-
tion may change. ActiveDirectory still has to be changed to be compatible with the
existing LDAPv3 standards though.

3.2.5 Authentication, access control, security

Table 3.3 shows the security level of some directory services. It refers to themax-
imum security level achievable by the given service; misconfiguration may result
in lower security levels of course.

Bootp/DHCP was designed to be used during the boot process when no con-
figuration information is known on the client (providing such information is the
purpose of Bootp/DHCP) so it has very little authentication. The only information
that can be used to authenticate a client is the client’s hardware ethernet address.
This address is normally stored in the network interface controller (NIC) of the
client but it can usually be modified from software so it cannot be really trusted.
Lack of security is not considered to be a real a problem since information provided
by the Bootp/DHCP service is usually publicly known anyway (at least to people
who has enough knowledge to interpret it).

The WINS service from NetBIOS was designed to work in a cooperative envi-
ronment on a small local network so it has little security measures. The protocol
has some protection against multiple clients registering the same name but a care-
ful attacker can cause problems by sending bogus name registrations to the WINS
server.

Service auth. method access control security level
Bootp/DHCP hardware poor low
NetBIOS/WINS none none low
DNS/Hesiod none minimal low
NIS none minimal low
NIS+ RPC/AUTH_DH good medium
LDAP Kerberos V good high
LDAP X.509 good high

Table 3.3: Directory security

NIS uses the Remote Procedure Call (RPC) protocol between the client and the
server. RPC has multiple authentication modes: no authentication, UNIX authen-
tication (the client tells the server who he is and the server beleives it), and DES
authentication (based on Diffie-Hellman key exchange; more on this later). NIS
uses RPC with no authentication. At the time of its creation, this was considered
secure: the server does not modify the maps directly and the sources of the maps
are world readable anyway. The problem with this is that this does not consider se-

30

Comparison Directory services

curity at the client side. Since the server is not authenticated, an attacker who can
watch the communication between the client and the server may be able to send
fake results to the client (see figure 3.7). Since most NIS/RPC implementations
use the UDP protocol such an attack is considered easy nowadays. More on this
topic can be found in [NISSEC]. It does not help even if the RPC layer uses TCP
since there are existing techniques today for injecting false packets to live TCP
connections.

Figure 3.7: Sending a forged reply to a client

Lack of authentication can also be a problem for Bootp/DHCP too: since
clients do broadcast queries and use the answer from the fastest server, it is pos-
sible to set up a fake server which answers faster than the original. Such a server
can force the clients to download a hacked bootimage that installs backdoors in
the operating system, configure a fake gateway that can therefore monitor all traf-
fic before bouncing it to the real gateway, or just to annoy users by sending bo-
gus configurations that prevent their system to work correctly. There are no good
protection against these problems so one must think carefully about how much a
system configured by Bootp/DHCP can be trusted when creating a Bootp/DHCP
setup.

DNS/Hesiod has basically the same level of security as NIS. The base DNS
protocol does not have any security measures and it uses UDP in almost all imple-
mentations. Attacks against DNS service are not uncommon. As a side note, the
weakness of DNS security is the cause that hostname-based authentication meth-
ods (such as used by the traditionalrsh, rcp etc. utilities) considered insecure
nowadays. There are ongoing development for adding cryptographic signatures to
DNS messages, but it is not widely used yet.

NIS+ is similar to NIS in the regard that it uses the RPC protocol. But con-
trary to NIS, NIS+ uses theAUTH_DES (or AUTH_DH) RPC authentication flavor.
AUTH_DES uses a 192-bit Diffie-Hellman key exchange protocol for negotiating a
session key; the session key is then used to add integrity protection using simple
DES encoding. The problem is obvious: when theAUTH_DES method was defined
back in 1989, these algorithms seemed to be strong enough. But time has passed,
and a 192-bit key is considered very weak nowadays (the recommended size nor-

31

Comparison Directory services

mally 1024 or higher), and DES is known to be breakable using brute-force in quite
a short time (what is "short" depends on how much money and computing power
can be thrown in; it can be between a couple of minutes to a couple of weeks). See-
ing the problem Sun come out a solution in their Solaris 7 operating system. Using
the newly definedRPCSEC_GSS RPC authentication mechanism (based on the GSS-
API specification) they provided a way to use 640 and 1024 bit Diffie-Hellman
keys. The problem with this approach is that it is not backwards-compatible so
older clients can not interoperate with servers where stronger encryption is en-
abled. Also, other vendors providing NIS+ implementation (e.g. Linux, AIX) has
no support for it. Also, the usage of simple DES remained, so if someone has the
computation power to brute-force a DES key within the lifetime of a session key,
the authentication process can be compromised.

Version 3 of the LDAP protocol defines two possible authentication methods:
simple password based authentication, and SASL authentication. Since SASL is
an abstract protocol definition, nearly every sane authentication systems can be
used with LDAP-based systems. The most commonly used ones are CRAM-MD5
(simple digest-based method to avoid plain text passwords), GSSAPI/Kerberos V,
and X.509. OpenLDAP allows the use of all of these methods through the usage
of the Cyrus SASL library (which is the most commonly used open source SASL
implementation).

NDS currently supports simple password-based authentication; the protection
from network sniffing can be achieved by using TLS to encrypt the communication
between the client and the server. Novell also offers an extension module for NDS
which provides RADIUS authentication support.

ActiveDirectory adopted Kerberos to be its primary authentication protocol.
This is a good thing at the first sight but there are of course problems. Microsoft
extended the Kerberos protocol with proprietary authorization information which
results in clients authenticated by other KDC implementations not being able to
use ActiveDirectory resources. The other problem is that the Microsoft version of
Kerberos uses an encryption algorithm which is not standard and Microsoft does
not allow other vendors to implement it.

After authentication, the next thing that needs attention is access control. DNS/
Hesiod and NIS has very limited capabilities in this field: they can grant/deny
access based on the client IP only. NIS+ has very good access control semantics:
specific rights (create, delete, modify etc.) can be granted on directories, on tables,
on row of tables and on coloumns of tables (see also section 3.3.5). Understanding
the interaction of these privileges may not seem to be easy for the first sight, but
they can be used to provide very fine-grained access control.

The LDAP protocol definition does not define access control. Such a specifica-
tion is currently under development but has not been finalized yet. Despite the lack
of a standard, every LDAP implementation provide some means of access control
but they differ in both their syntax and application range. For example, OpenLDAP
(an open source LDAP implementation) has very robust ACL syntax: access rights
can be specified based on object name (DN), attribute types and attribute values.

32

Comparison Directory services

Access can be granted or denied according to the client’s IP, authenticated identity,
group membership and so on. In the case of OpenLDAP, the ACLs are defined in
the server’s configuration file so they are static. There is support for dynamic ACLs
called ACIs, but they are not standard yet so their syntax and semantics are subject
to change.

NDS has similar access control semantics as OpenLDAP but it stores ACLs
entirely in the directory itself. It has the advantage that ACLs are easy to modify
on-the-fly without the need to restart the server. The disadvantage is that when
calculating the effective rights of a client the server has to traverse the directory tree
where the object representing the specific client lives and it results in performance
penalty. However, such a performance penalty is often not noticable. The other
problem with storing ACLs in the directory is that it can be hard to maintain them.
When an object has to be granted specific rights in several different parts of the tree,
it can be hard to oversee what rights are in effect. Although questions like "what
rights does user Joe has" can be answered by performing a search operation on the
attributes holding access control information (and indeed the NDS user interface
has support for such queries), questions like "who has been granted some kind of
access" can be hard to answer.

ActiveDirectory follows NDS and also stores access control information in the
directory.

3.2.6 Administration

In the real life it is not enough to have a directory service that can handle our data,
survives errors and serves all clients fast. The directory service has to be adminis-
tered and it is very important how easy or difficult that task can be. Some directory
services has more or less standard administrative tools but for large networks these
tools can turn out to be not optimal and proprietary tools has to be created. If this
is the case it is important that there should be a well-defined API for accessing and
manipulating the directory.

Table 3.4 summarizes the availability of standard command line tools, GUI and
API. For the tools a "yes" means that there are a more or less standard set of tools
or GUI applications that can be used to manipulate the directory. A "no" does not
neccessarily mean that there are no such tools but it may indicate that they are not
standard and not used widely.

Bootp/DHCP servers work using a static configuration which has to be changed
externally. The simplicity of the protocol does not make it neccessary to have dedi-
cated tools or API. Of course the Windows implementation has graphical interface
but it is still rather simple.

WINS is meant to work completely automatically so it has no direct access
interfaces at all.

NIS has a master source of information maintained in traditional ASCII for-
mat. The NIS framework uses standard UNIX tools such as make and some own
utilities to convert these ASCII files to database files used by the server processes.

33

Comparison Directory services

Service command line tools GUI tools standard API
Bootp/DHCP no no no
NetBIOS/WINS no no no
DNS yes no yes
Hesiod no no yes
NIS yes no no
NIS+ yes no yes
LDAP yes yes yes
ActiveDirectory yes yes yes
NDS yes yes yes

Table 3.4: Administration interfaces

There are also some tools for querying the maps from the command line mainly for
debugging purposes. Apart from these there are no dedicated management utilities
available for NIS but the source data on the master server can be manipulated by
whatever software is capable to edit traditional UNIX configuration files.

For NIS+ the things are better. There are good command-line tools available
for manipulating every aspect of the database. With the help of scripting languages
these tools can be used to build quite sophisticated administration tools. There is
also an API defined for manipulating the database from programs written in C.
For Solaris, Sun created the Solstice utilities which provide a graphical interface
to NIS+ as well. It has one big problem only is that it is not easily extensible so if
there are non-standard tables being utilized to hold other information about users
or computers, Solstice can not deal with them.

The DNS was designed to work from static configuration files just like Bootp/
DHCP. There are a couple tools for querying the database from the command line
(like dig, host or nslookup) which can be found on almost every system and can
be considered quasi standard. The same goes for API: most UNIX-like systems
integrated the resolver library from the BIND distribution.

When designing Hesiod, MIT decided not to include administration facilities.
They did it because they wanted to use the Athena Service Management System
(SMS) to accomplish this task. Hesiod does not depend on the availability of SMS
but without SMS, the Hesiod data base is just a set of text files in BIND resource
record format that must be managed with a text editor. This design has the ad-
vantage that small sites does not have to install the Athena management system to
use Hesiod while large sites can enjoy the advantages of having good management
tools.

For LDAP, there are quasi-standard command line tools originating from the
first implementation made at the University of Michigan. There are a good number
of both free and commercial GUI based management tools for LDAP. Such tools
are often suffer from two problems: either they are too general that one can only
deal with low-level information at the object level (e.g. when you want to create

34

Comparison Directory services

a new user, you have to know what object classes does it need to be in, what
attributes must it has etc.), or provide high-level abstraction but only support a
limited range of directory schemas and layouts. There are some promising tries to
overcome these limitations but the Swiss Army knife of LDAP GUI applications
has not been written yet.

Commercial directory implementations concetrate much more on the user in-
terfaces and it is true for both NDS and ActiveDirectory. NDS has a quite good
GUI interface called ConsoleOne. Since NDS is on the market for about 8 years
now, Novell had the time to develop an administrative interface that is efficient and
can solve the problems arising in most directory deployments.

ActiveDirectory follows the Microsoft traditions to offer a good looking GUI
environment which is not neccessarily the best but can be used to accomplish the
management tasks needed to administer a large Windows-based network environ-
ment. Problems may arise if interoperability with other, non-ActiveDirectory sys-
tems is desired but they are not originate from the limits of the GUI only but rather
than the limitations of the directory itself and from the standards not being fol-
lowed.

3.2.7 Integration with applications

The directory services designed specifically for helping network and operating sys-
tem management usually do not have too much applications outside their own ad-
ministration tools. Among these services only NIS+ is flexible enough to be used
for more general purposes. One such purpose can be to store additional data about
users and computers that are not directly needed for operating them but may pro-
vide help to administrative software and personnel. Such information can include
personal identification and account status for users and location, identity and reach-
ability of administrator for hosts. NIS+ provides both tools and an API for these
information to be used from custom management software.

From the applications viewpoint X.500 based directory services has far more
importance. These directory services provide the feature that they can store nearly
arbitrary data arranged in a hierarchical structure. There are a large number of
applications that provide and use both white pages and yellow pages services using
X.500-based directories. Currently LDAP is the most widely accepted and used
protocol for communicating in a multi-vendor environment and the importance of
LDAP importance is expected to rise even more in the future.

3.2.8 Summary

During the development of computers and the Internet several directory services
was created to be used in different environments. The direction was (and still is) to
move from simple and specialized services to more generic ones. However there
are areas (like boot protocols) where using complex services is not appropriate ei-
ther because the available resources (like ROM sizes) are limited or simply because

35

Comparison Directory services

the raw amount of data to manage and the number of requests does not allow the
luxury of wasting resources using too generic services (this is the case with the
DNS).

In these days both hardware and software platforms change rapidly but there
are always old legacy systems that cannot be replaced for various reasons and need
to be supported. This can also prevent using new techniques instead of old ones
(like using LDAP instead of NIS) but in most cases there are solutions to emulate
an old interface using the new service (like using a NIS-gateway backed by an
LDAP-based directory).

While other directory systems are not going away in the near future, the vis-
ible trends in both the operating system and in the application industry show the
growing importance of X.500 based directory solutions. While the original X.500
standard was anything but successful (it had very few real implementations and
uses), its effects are enormous. The most successful technologies based on the
X.500 standards are clearly the LDAP protocol and the various PKI architectures
(see the next chapter). The usage of the LDAP protocol created the possibility
to create and efficiently manage both network environments and directory-based
information systems to a global scale which was not possible with previous archi-
tectures. Of course there are a wide range of problems that still need to be solved
and the solution will likely require the modification or even redesign of existing
standards and technologies, but the direction has been set.

3.3 Authentication services

3.3.1 Design goals and basic principles

The most traditional authentication mechanism is password authentication: the
client sends its identity (e.g. username) and a secret password to the server, which
then verifies using a local database that the given identity and password match.
There are several problems with this approach:

• Network sniffing. An attacker who can monitor the traffic on the network
is able to interpret authentication messages and extract the username and
password pairs. Such attacks are very easy and there are even automated
tools built for this purpose.

• Fake servers. If a server goes down for some reason (like maintenance) a
malicious user might be able to set up a fake server which accepts authenti-
cation requests and stores username/password pairs. The client has no way
to know if it talks to the real server or not. This method can work even if the
network is physically secure from sniffing.

• Administration costs. In a large network, maintaining consistent user and
password databases on each server machine can be hard or even impossible.

36

Comparison Authentication services

• Convinience. Most users do not like to enter passwords all the time when
they want to access network resources. So it is important to have the pos-
sibility of single sign-on when a password (or other secret) needs to be pre-
sented only once in a working session and all further authentication happen
transparently.

When developed as part of the Athena project at MIT, Kerberos was designed
to work in a hostile network environment, to provide strong, mutual authentication
and to be able to serve a very large number of users.

Main design goals of Kerberos:

• Two-way (mutual) authentication. That is, not only the service learns with
confidence who the client is, but the client, if it wishes, can also be certain
that the correct service is being used.

• No clear text passwords should be transmitted over the network

• No clear text passwords should be stored on servers

• At the clients, clear text passwords should be handled for the shortest time
possible and then destroyed

• Any authentication compromisations should be confined to the current ses-
sion or the current user

• Network authentication should go on largely unnoticed in most cases

• Minimize the effort needed to alter existing network services that previously
used other kinds of authentication

Kerberos makes some assumptions about the environment it operates in:

• There will be both public and private workstations. Public workstations have
little or no physical security

• Diverse network environment with no link encryption. Some or all parts of
the network may be vulnerable to active or passive security attacks

• Centrally-operated servers have moderate physical security and known legit-
imate hardware

• A small number of servers, like the Kerberos authentication servers, operate
under considerable physical security

• It is assumed that the clocks of all computers running Kerberized services
are loosely synchronized within a few minutes

37

Comparison Authentication services

Kerberos uses secret key infrastructure to provide authentication service. This
requires the presence of central trusted servers that store the secret keys of all par-
ticipants and perform operations that needed for authenticating those participants
to each other. The Kerberos model provides a hierarchical namespace divided
to realms. Kerberos supports authentication accross real boundaries (inter-realm
trust) using special principals. These principals has to be manually created in both
realms.

Public key cryptography has the advantage that two parties can communicate
with each other without the need of a third-party. This feature made it very attrac-
tive to be used in security systems. But there are problems which can be solved
only by building a complex infrastructure. The first problem is the need to be cer-
tain that a public key really belongs to the entity who I think I got it from. If this
cannot be verified then the security could be easily circumvented by a classical
man-in-the-middle attack. One way to prevent this is to use external channels (like
personal meetings) to verify the connection between principals and their public
key. This is the method how PGP’s web of trust works. For large scale systems
such ad-hoc methods are not adequate. To overcome the problem trustedCertifi-
cate Authorities(CA) was introduced. These authorities can issue certificates that
contain both the identity and the public key of the requestor and are digitally signed
by the CA. So if both parties in a communication trusts a given CA they can vali-
date each other’s certificate using the CA’s public key. A certificate can have more
than one signatures from different CAs.

Certificates have a timestamp from when they are valid and have a limited
lifetime. A certificate can only be used within this lifetime; when it expires, a new
certificate should be requested. Certificates can be revoked before they are expire
if the private key belonging to the certificate gets lost or is compromised. The
procedure needed for revoking is the Achilles heel of the PKI system since if two
parties want to communicate there is no way to know if either party’s certificate was
previously revoked without the need to communicate with a third-party. The list of
revoked certificates (Certificate Revocation List, CRL) is maintained by each CA.
So when checking the validity of a certificate the issuing CA should be contacted
to check if the certificate is valid or not. CRLs are normally issued periodically
and cached at many places to ensure their availability. When periodic updates are
not enough (such at with high-value fund transfers or large stock trades) a more
direct status report may be neccessary; this can be achieved by using theOnline
Certificate Status Protocol(OCSP, [RFC2560]) if the CA supports it.

The other major problem besides certificate verification is the storage of private
keys. While certificates containing the public keys can be - as their name say
- publicly distributed using LDAP directories, FTP transfers or the World Wide
Web, secure keys need to be heavily protected. If secure keys can be tampered with
then the whole PKI architecture is undermined. The big problem that contrary to
password-based systems, private keys are very hard to be memorized by humans
and most people would simply refuse to do so if she was asked to. There is no good
general solution for the storage of private keys, but there are some possibilities:

38

Comparison Authentication services

• Encrypt them with a symmetric algorithm using a key derived from a pass-
word. It has the advantage that passwords can be remembered by humans
and the encrypted key can be stored on insecure medium (like a directory
service). It has the big disadvantage that passwords are usually way weaker
than the secret key itself so the security of the whole PKI is reduced to the
level of password security. At places where PKI was introduced because
password based security is not considered enough this is clearly unaccept-
able.

• Store the secret key on a secure hardware medium like a smartcard. This
has the advantage of maintaining the security level provided by the PKI’s
cryptosystem. The disadvantage is the cost of building the hardware infras-
tructure needed to create and read the cards. Other disadvantage is that a
smartcard can be stolen more easily than a password.

• Combine the above two. Store the key on a smartcard but protect it with a
password (usually a PIN code). This lessens the dangers of a stolen smart-
card. Smartcards can be made to perform all neccessary crypto operations
needed by the PKI themselves thus eliminating the need of reading out the
secret key from the smartcard. Using this technique it can be practically
impossible for an attacker to stole the secret key of some other user.

The basic format of certificates used by the major PKI implementations was
defined in [X.509] as part of the ITU/ISO directory standardization process. Since
X.509 is part of the X.500 directory standards, it uses the convention of X.500 for
naming principals. For this reason the IETF choosen LDAP (which also uses the
X.500 naming scheme) as one of the operational protocol for storing certificates
and CRLs.

Managing dispersed serial line and modem pools for large numbers of users
can create the need for significant administrative support. Both TACACS+ and
RADIUS was designed to be authentication systems primarily for dial-up servers
and routers. TACACS+ can also function as an authorization and accounting ser-
vice; accounting support has been also added to RADIUS in later versions.

The overall design goal of TACACS+ is to define a standard method for man-
aging dissimilar Network Access Servers (NASs) from a single set of management
services such as a database. A NAS provides connections to a single user, to a
network, or subnet, and interconnected networks.

RADIUS is somewhat similar to TACACS+ but while TACACS+ is the prod-
uct of one corporation (Cisco) RADIUS is more widely supported. RADIUS
has the disadvantage that authentication and accounting cannot be separated so
nicely as in TACACS+: TACACS+ allows you to put authentication, authoriza-
tion and accounting to different servers or even change some of them to non-
TACACS+ services (like changing the authentication method to Kerberos but still
using TACACS+ for authorization and accounting).

39

Comparison Authentication services

GSSAPI was designed to be a generic way to talk to different authentication
systems. Using GSSAPI eliminates the direct dependency of an application on a
particular security service which gives the benefits of smaller and cleaner code to
the programmer and the ability to freely choose the authentication system to the
administrator. GSSAPI provides authentication, data integrity and confidentality
services in a generic manner independently of the underlying security mechanism.
GSSAPI is also independent from the protocol environment and association mean-
ing that GSSAPI invocations can be embedded in a given protocol hidden from the
caller but the application may also call GSSAPI services directly without the fear
of conflict with the protocol layers it uses.

The SASL protocol was designed to provide an easy way to add authentication,
integrity and confidentality support to connection-oriented protocols. Using SASL
the upper level protocol can identify and authenticate an user to a server and nego-
tiate further protection of protocol interactions. Once negotiated, a security layer
can be inserted between the protocol and the connection.

SASL can use several security mechanisms. The server may advertise the set
of supported SASL mechanisms and clients can choose the one they wish to use.
After the mechanism selection, there is a series of server challange - client response
messages specific to the selected security mechanism. During these messages the
security mechanism performs authentication, transmits an authorization identity
and negotiates the further use of a mechanism-specific security layer. If such a
layer is negotiated, it is applied to all subsequent data following the authentication
phase.

SASL can use the GSSAPI security mechanism. With this combination both
the interface for talking to the used authentication service and the inclusion of the
security provided by that service in existing protocols becomes easy. This way
applications and protocol implementations can exploit the full power of GSSAPI-
compliant security services without the need to explicitly depend on such a service.

3.3.2 Quality of Service

Kerberos was designed to be a distributed authentication service. The protocol
described in [RFC1510] does not define authorization, integrity or confidentality
features. However, the secret session key used for authentication can also be used
for exchanging safe (integrity checked) and private (encrypted) messages. The
Kerberos V GSSAPI mechanism defined in [RFC1964] can be used if standardized
methods for providing integrity and/or confidentality are needed. It is generally a
good idea to use GSSAPI instead of the API of a specific authentication service
anyway.

PKI can be used for authentication, digital signatures (integrity checking) and
non-repudiation purposes. Non-repudiation is a property achieved through cryp-
tographic methods which prevents an individual or entity from denying having
performed a particular action related to data. It is very important in business appli-
cations when certain actions have financial consequences.

40

Comparison Authentication services

Various PKI implementations usually offer the possibility of data encryption
as well. However, encryption is not done directly by public key cryptography
because it is usually very resource-consuming. Instead, the involved parties agree
on a common secret key using public key methods and then use some symmetric
encryption algorithm with this negotiated secret key to actually encrypt the data.
Because of this, the strongness of authentication and encryption may be different
in a given PKI implementation.

Both the TACACS+ and RADIUS protocols offers authentication only, there is
no support for either integrity or confidentality services.

GSSAPI being a generic API layer has a wide range of QoS parameters. A
specific authentication service which provides GSSAPI support of course may not
implement all of these features. The supported QoS features are:

• Delegation. It enables the transfer of rights of the initiator (client) to the
acceptor (server). Using delegation the server can authenticate itself as an
agent of the client

• Mutual authentication

• Replay detection

• Out-of-sequence detection

• Anonymous authentication

• Per-message confidentality protection

• Per-message integrity protection

• Mechanism-dependend quality of protection (such as choosing the strength
of encryption)

The only lacking thing is support for non-repudiation. This is usually not a
problem because GSSAPI is usually used in the lower levels of protocol stacks
where such information is usually not needed.

3.3.3 Underlying algorithms

Kerberos uses symmetric encryption techniques to provide authentication service.
When a client wishes to authenticate itself to a server it relies on theauthentication
server(AS) to generate a new encryption key (called thesession key) and distribute
it to both parties using a Kerberosticket. The ticket is a certificate issued by an
authentication server, encrypted using the server key. Among other information,
the ticket contains the random session key that will be used for authentication of
the principal to the server, the name of the principal to whom the session key was
issued, and an expiration time after which the session key is no longer valid. The

41

Comparison Authentication services

AS sends this ticket to the client who then forwards it to the server as part of the
authentication request.

To support single sign-on, some kind of secret has to be cached on the client.
To limit the consequences of a possible compromisation of this secret, it should not
be the user’s password. Kerberos uses a special ticket called theTicket Granting
Ticket(TGT) for this purpose. Using this technique the user’s password needs to
be present only for a very short time on the client system. When the client wants
to authenticate itself to a new server, it contacts theTicket Granting Server(TGS)
to do this. The ticket granting exchange is identical to the authentication exchange
except that the ticket granting request has embedded within it an authentication re-
quest, authenticating the client to the authentication server, and the ticket granting
response is encrypted using the session key from the TGT, rather than the user’s
password. Theoretically the AS and the TGS can be separate services but in prac-
tice they are usually implemented by the same daemon.

Figure 3.8: The Kerberos authentication protocol

A simple case of the Kerberos authentication protocol shown in figure 3.8 con-
sists of the following steps:

1. Initial request (AS_REQ): contains the client’s identity and the identity of
the server (usually the TGS) for which it is requesting credentials.

2. The response (AS_REP), contains a ticket for the client to present to the
server, and a session key that will be shared by the client and the server. The
session key and additional information are encrypted in the client’s secret
key. The AS_REP message contains information which can be used to detect
replays, and to associate it with the message to which it replies.

3. In order to provide single sign-on the client requests a TGT from the TGS
(TGS_REQ). The message format for the TGS exchange is almost identical
to that for the AS exchange. The primary difference is that encryption and
decryption in the TGS exchange does not take place under the client’s key.
Instead, the session key from the ticket-granting ticket is used.

4. The reply (TGS_REP) sent by the TGS contains the requested credentials,
encrypted in the session key from the ticket-granting ticket.

42

Comparison Authentication services

5. When the clients want to authenticate to a server, it sends an application re-
quest (AP_REQ). It contains a ticket, an authenticator, and some additional
bookkeeping information. The ticket by itself is insufficient to authenticate
a client, since tickets are passed across the network in cleartext (tickets con-
tain both an encrypted and unencrypted portion, so cleartext here refers to
the entire unit, which can be copied from one message and replayed in an-
other without any cryptographic skill), so the authenticator is used to prevent
invalid replay of tickets by proving to the server that the client knows the ses-
sion key of the ticket and thus is entitled to use it.

6. Typically, a client’s request will include both the authentication information
and its initial request in the same message, and the server need not explicitly
reply to the AP_REQ message. However, if mutual authentication (not only
authenticating the client to the server, but also the server to the client) is
being performed, an AP_REP message is required in response.

Kerberos is based on symmetric encryption algorithms. [RFC1510] specifies
the usage of DES encryption only which is considered rather weak nowadays.
There are protocol extension proposals for using3DES, IDEA, Rijndael, Twofish
andSerpentalgorithms. 3DES and IDEA are already used in many existing imple-
mentations while the others are still in the proposal phase.

For integrity checking, [RFC1510] specifies variants ofCRC32, MD4 andMD5
digest algorithms. Later proposals define the use ofSHA1([FIPS180]) andSHA256
algorithms.

The Kerberos protocol has support for some additional features like renewable
tickets (tickets which lifetime can be extended without the need of authenticating
again), forwardable tickets (TGTs that can be sent to the server), proxiable tickets
and so on.

There are several methods to enchance Kerberos. There is a method called
preauthentication by which the client can provide evidence during the initial re-
quest that she knows her key before a ticket is issued. This method was meant to
make it harder to mount dictionary attacks against the Kerberos service. [TWU]
describes such an attack and also how timestamp-based preauthentication can also
be circumvented. It offers the possible solution as using theSecure Remote Pass-
word protocol(SRP) developed at the Stanford University ([TWUSRP]). Note that
[RFC1510] explicitly states that Kerberos itself does not provide protection from
dictionary based attacks.

An other preauthentication method which is actually used by several commer-
cial implementations is the usage of one-time passwords. This technique has the
feature that it protects from compromises resulting from stoling passwords using
a hacked login program on the client machine. Since the user needs to present a
new one-time password every time she wants to authenticate besides her normal
password, stealing the normal password is not enough to impersonate the user.

It should also be noted that there are efforts to combine Kerberos with public-
key cryptography. It would allow combining the benefits of both worlds: PKI

43

Comparison Authentication services

certificates could be used to request initial tickets while the performance burden of
certificate checking and public key cryptography protocols could be eliminated on
subsequent authentication sessions.

Public-key cryptography was invented in 1976 by Whitfield Diffie and Martin
Hellman, as a key exchange mechanism supporting an otherwise secret-key system
([DH]). The Diffie-Hellman algorithm is based on the difficulty of solving a dis-
crete logarithm problem. The most well-known public key encryption algorithm
was invented by Ron Rivest, Adi Shamir, and Leonard Adleman and calledRSA.
The RSA algorithm builds on the hypothesis that the factoring of large numbers
is difficult. It is important to note that neither the discrete logarithm nor the fac-
torisation problem isproved to be difficult. If someone could come up with a fast
solution for these problem it would be a very hard hit for public key cryptography.

The DSA algorithm was created by the National Institute of Standards and
Technology (NIST) to be used as a digital signature algorithm as part of the Digital
Signature Standard ([FIPS186-2]). Contrary to the RSA algorithm, DSA can only
be used for signing and not for encryption. There is a version of DSA based on
elliptic curves called ECDSA. The ECDSA algorithm has the advantage that it can
use much smaller keys to achieve the same level of security than the original DSA
algorithm, making it ideal for small embedded systems (like smartcards).

The public key algorithms currently adopted by PKIX for digital signatures are
RSA and DSA. The recommended digest algorithms for signature generation are
MD2, MD5 and SHA1. The PKIX certificate specification ([RFC2459]) does not
require implementations to use these algorithms, it only specifies that if they do
use them then they must do it in a standard way. Implementations are also free to
use other algorithms.

Public key cryptography can be used for 4 basic things:

1. Digital signatures (integrity protection)

2. Data encryption (confidentality protection)

3. Non-repudiation

4. Key agreement

The X.509 certificate format allows specifying the allowed usage of a given
key. The reasoning behind this is the different usages mean different attack pos-
sibilities on a given key. For example, digital signatures produce only a small
amount of encrypted data so performing various attacks based on analysis of the
encrypted data are much harder than for keys used for encryption, where such data
usually available in large quantities. Therefore it is advised to use separate keys
for different purposes: the more protected signature keys can be used for a long
time while the more vulnerable encryption keys can be changed on a more regular
basis. The policy of separate keys for separate purposes may be even enforced by
laws or company security policies.

44

Comparison Authentication services

The TACACS+ protocol described in [RFC1492] does not support any encryp-
tion of data but the Cisco implementation offers a simple encryption method by
calculating an MD5 sum of the session identifier, a secret key shared by the client
and the server, the version number, the sequence number and the previous hash (if
more than 16 bytes has to be encrypted) and then XORs this hash with the data. If
the common secret key is strong enough this should provide adequate protection
but the strength of this encoding has not been studied thoroughly (or the results
was not published). There are some known weaknesses of the encoding found by
Solar Designer (solar@false.com): it has no integrity checking so an attacker can
alter certain parts of the communication without notice. This can be used to al-
ter accounting data. Second, there are no protection against replay attacks which
is again mostly a problem for the accounting parts. Third, there is a possibility
to force reply packets to be encrypted using a session identifier of the attackers
choice which makes them vulnerable to crypto analysis attacks. Fourth, due to
the small size of the session identifier and the birthday paradox, it is very likely
that there will be two sessions encoded with the same session identifier amongst
about 100,000 sessions (which means about 20,000 dial-up sessions). Given these
weaknesses one may wonder how secure TACACS+ can be.

RADIUS just like TACACS+ is also using a secret shared between the client
and the server to provide security. But contrary to TACACS+, this secret is not
used to encrypt the whole conversation. Instead only the user-supplied secret in-
formation (usually a password) used in authentication packets is encrypted using
a similar MD5-based encryption technique than in TACACS+. If the server con-
siders the password to be valid, it responds with a set of configuration information
stored in its database for that user. The response packet has integrity checking us-
ing an MD5 hash of the data in the response packet, a random number sent by the
client as part of the request and the shared secret. An attack against this protocol
based on brute force guessing the shared secret was described by Rich Friedeman
in a letter sent to the Bugtraq mailing list in 1997.

It should be noted that the semantics of the secret the user sends to the RADIUS
client which then forwards it to the RADIUS server is not defined. It can be a con-
ventional password but there are existing implementations to use one-time pass-
words or hardware based solutions like the SecureID card made by RSA Labora-
tories.

3.3.4 Scalability, availability

The authentication system Kerberos uses does not require vast amount of resources.
Usually a quite small server can perform authentication tasks for a large number of
clients. Kerberos can use DNS SRV records to locate KDCs so it is easy to add a
new KDC if one cannot cope with the amount of requests. What is a problem that
there is no standard replication protocol. The original MIT implementation uses
a master-slave setup with read-only replicas, and uses the kprop protocol which
simply dumps the whole database on the master and transfers it to the clients. In

45

Comparison Authentication services

most environment it is enough but in an environment with multiple thousands of
users it can be a performance bottleneck. Heimdal (an European implementation
of the Kerberos V protocol that aims to provide reasonable API compatibility with
the MIT implementation) has an experimental protocol called hprop that can be
used for incremental replication which results in better performance. ActiveDirec-
tory’s Kerberos implementation relies on the ActiveDirectory replication protocol
to distribute authentication data to slave servers.

In the case of a large organization the multi-realm support of Kerberos can be
utilized to split the database to smaller parts. Using multiple realms also has the
benefit that each organizational unit can administer its own users if it is required,
but having one central administration body is also possible.

PKIX was designed to be able to scale up to even a global size. Being a general
protocol and standard set however means that scalability and availability issues are
hard to discuss. There are protocols and recommendations that make it possible
to build very fault-tolerant and highly available systems but it is often let to the
actual implementation how much does it actually use from the defined architecture.
Also client side issues for locating certificate verification services for example are
only loosely defined and there is no generally accepted standard (instead there are
a set of standards). Commercial PKIX implementations of course usually offer
consistent interfaces but there are no guarantees that different implementations can
interoperate easily. Of course the basics are standard so some interoperability can
be achieved if both parties claim to support the PKIX architecture but using the
full range of features offered by either implementation may not be possible. It may
be very well true that two different implementations offer the same scalability and
availability parameters yet they cannot provide it between each other.

Experience has shown that RADIUS can suffer degraded performance and lost
data when used in large scale systems, in part because it does not include provisions
for congestion control. There is little information available about the scalability of
TACACS+ but because of it similar nature it may suffer from the same congestion
problems as RADIUS.

For TACACS+ and RADIUS, clients can usually be configured to try to use
more than one servers in the order they are defined in the configuration. This makes
it possible to provide basic failover capabilities. However, there is no standard
support for synchronizing the database of either different TACACS+ or RADIUS
servers so it must be solved by external means (like copying the master configura-
tion file to the other servers regularly).

3.3.5 Authorization

As I have already written before, authorization is a tricky part of the business.
The major problem with authorization is that it is nearly impossible to do it in a
general manner. Authorization means deciding who can do what. The "who" part
is easy, since the authentication service being used determines it. But the "what"
part is problematic because it depends on solely the service the client is asking for.

46

Comparison Authentication services

Different services provide different set of available operations.
NIS+ is somewhat special because despite being a directory service it is (at

least in the default implementation) tightly integrated with the AUTH_DES RPC
authentication mechanism. This gives the advantage that authorization is well-
defined: every domain, table and every entry in every table has an owner; domains,
tables also have an associated group. Access can be granted to the owner, group,
everybody authenticated or not authenticated principal to domains, tables and en-
tries and rows in tables. These possibilities together give a fine-grained authoriza-
tion system.

Kerberos does not have authorization support just because it was meant to be a
general authentication system and authorization cannot be solved generally. How-
ever, there are parts in the Kerberos protocol which makes it possible to extend
tickets to also carry authorization implementation; few applications make actually
use of it. Basically the same goes for PKIX also: the X.509 certificate format does
not define authorization, but it can be extended to contain extra information to be
used for authorization. The disadvantage is that certificates cannot be changed af-
ter they are issued so changing authorization status is only possible by revoking the
certificate and issuing a new one.

The TACACS+ protocol contains explicit authorization support. This support
was designed with mostly dial-up servers in mind and provide methods for specify-
ing the requested service (ppp, slip, shell etc.), the requested protocol (telnet, http
etc.), network interface permissions and similar features. The response for an au-
thorization request can be either allow or deny or a set of features that are allowed
instead of the set that was requested. In theory this system could be extended to be
used with other applications but there are no such implementations.

RADIUS also supports authorization to some degree. First RADIUS servers
are enabled to make authentication decision based on implementation-specific de-
tails beside the actual password checking. Such decision might depend on the time
of the day, number of concurrent sessions, connection time used in the last week
and so on. The protocol’s support for authorization is simple: the authentication
reply packet can contain configuration information, and there are special attributes
defined that actually hold information usable for authorization. It should be noted
that technically authorization data is not different from general configuration reply
data from the protocol’s point of view - only its usage on the client side makes the
difference.

SASL has very basic support for authorization: together with the authentication
data, it can send an identifier (usually a username) specifying the entity whose
behalf the client wishes to act in. It allows proxy applications to authenticate to the
shielded service using their own identity but specifying the user who initiated the
original requests. Applications supporting SASL can freely decide how they want
to use the authorization identity; in the most simple case, they may simply reject
the request if the authentication and authorization identifiers are not the same.

The GSSAPI specification leaves authorization support to the underlying secu-
rity mechanisms. There is generic support only for manipulating principal names

47

Comparison Authentication services

(converting between internal and textual formats and providing comparison func-
tionality). It is totally up to the application to implement its own authorization
policy upon these functions.

The conclusion is that authorization support is only possible if the target ap-
plication area is well known (this is the case with TACACS+ and partially with
RADIUS). In other cases only some very basic support can be provided and indi-
vidual applications need to implement appropriate authorization themselves.

3.3.6 Supported platforms

The original MIT implementation is freely available for UNIX systems. There is
an alternative free implementation called Heimdal and there are a large number of
commercial implementations available for different systems. Most big companies
like IBM, Sun or Cisco support Kerberos V in their products. For Windows, Win-
dows2000 has Kerberos support built into ActiveDirectory. It should be noted that
the ActiveDirectory implementation has features not compatible with other imple-
mentations so there might be interoperability problems between ActiveDirectory
and other Kerberos implementations. The usual case is if a client authenticates
using a third-party KDC then it will not be able to use ActiveDirectory resources.

PKIX-related products are available for nearly every possible platform. Their
features and the range of supported operations vary widely. The most commonly
used PKIX application is the usage of SSL/TLS protected services, most notably
the secure HTTP service used for publishing sensitive content on the Web. The
second most common application is secure messaging using S/MIME which is
also available on nearly all platforms. There are commercial enterprise-level PKI
solutions which support the whole range of PKI features. These solutions some-
times use proprietary hardware and software solutions but many on them run on
platforms like Windows or commercial UNIX implementations.

TACACS+ was developed by Cisco to be used with Cisco equipment such as
routers. There are a couple of freely available TACACS+ server implementations
that run on UNIX systems.

There are several free implementations available for RADIUS on UNIX plat-
forms. Since RADIUS became a standard most companies making networking
devices capable for authentication (routers, intelligent switches, dial-up servers
etc.) support it. In Windows, the Remote Access Service (RAS) is also capable to
authenticate dial-in users using RADIUS.

GSSAPI being an API for a specific authentication service is supported on
whatever architecture that authentication service supports. The most widely used
GSSAPI mechanism is Kerberos V. Both free Kerberos implementations (MIT and
Heimdal) have GSSAPI support for UNIX-like operating systems and with some
effort they can be compiled on Windows too.

SASL being an abstract protocol layer is even harder to catch than GSSAPI.
There is an open source library available from the Carnegie Mellon University
called Cyrus SASL. It is available for UNIX platforms and supports several mech-

48

Comparison Authentication services

anisms like GSSAPI, PLAIN or CRAM-MD5. There is also a Java implementation
which makes SASL available on every platform where a Java compiler or Java Vir-
tual Machine is available.

3.3.7 Integration with applications

Kerberos being available for quite a long time there are several applications that
natively support it. The MIT distribution comes with kerberized versions of the
traditional UNIX tools rsh, rcp, telnet and ftp. There are kerberized POP3 servers
and clients (Pine, mutt, Eudora) available. Even more applications support Ke-
breros through the GSSAPI interface. In the UNIX world it should not be a prob-
lem to find a kerberized version of any application. For Windows the situation is
a little worse as official Kerberos support was only recently introduced with Win-
dows2000 and not many applications utilize it currently. Since Microsoft commit-
ted itself to the use of ActiveDirectory which in turn uses Kerberos, the range of
kerberized applications for Windows is expected to rise in the near future.

The application support for PKIX is very diverse. Some parts like authentica-
tion are widely implemented while other parts like non-repudiation support do not
have that many implementations. The most widely used application of PKI tech-
niquies is theSSL/TLSprotocol. It provides transparent link encryption with op-
tional authentication. The authentication is done by using X.509 certificates while
the actual encryption uses symmetric key algorithms. SSL/TLS is used by almost
all Internet protocols that need data encryption. The big advantage of SSL/TLS is
that it can be built into applications without the need to alter the existing applica-
tion protocol. In many cases it is even possible not to alter the application at all
just put it behind a wrapper that does the SSL/TLS encoding (of course this method
prevents the main application from taking benefits of certificate-based authentica-
tion).

The other well known application of PKIX techniques is theS/MIME stan-
dard for signing and encrypting e-mail messages. Most commercial and many free
e-mail clients support S/MIME messages. The range of security algorithms may
be different, especially older commercial software support low security encryption
algorithms only due to the former export regulations in the USA. Free software
usually do not have such limitations and they support the strongest available algo-
rithms.

There are a couple of applications with TACACS+ support. There is a free
GUI application called Gconfig which can be used to edit the configuration of a
TACACS+ server interactively. There is an authentication module for Apache and a
PAM module which lets any PAM-aware applications use TACACS+ for verifying
passwords and accounting sessions.

There are a wide range of applications supporting RADIUS. As for TACACS+,
there is an Apache module for HTTP authentication and a PAM module for generic
UNIX authentication using RADIUS. Furthermore applications like OpenLDAP or
the Diablo news server also support authenticating via RADIUS on systems where

49

Comparison Authentication services

PAM support is not available.
There are many applications using authentication services through GSSAPI

and/or SASL. The IMAPv4 protocol used by advanced e-mail servers and clients
has SASL support. There are standard security extensions for the FTP protocol
using GSSAPI. SASL support was recently added to the SMTP protocol by which
nearly every e-mail is delivered today. SASL is also the standard authentication
layer for the LDAPv3 protocol so most directory applications claiming LDAPv3
support also support SASL. There is ongoing work being done to add SASL sup-
port for the HTTP protocol as well.

3.3.8 Summary

TACACS+ was designed for a specific purpose where only a limited set of features
is required. Also it should be as simple as possible because networking devices
with very limited resources have to be able to use them. TACACS+ performs well
in the environment it was designed but clearly it should not be considered for more
advanced tasks.

RADIUS being more widely accepted than TACACS+ can be used for services
that require a simple authentication only and do not want more advanced security
features like encryption (either because it is not needed or because they can provide
it by their own). RADIUS can be especially handy for companies and organizations
managing dial-in users as the users dial-in password can be used for accessing other
services as well. While it may not be very secure, it is often adequate for simple
tasks.

Kerberos is a proven system for medium to large network environments. If it is
configured right and used properly, it provides strong network security for a wide
range of applications. When selecting a distributed authentication system to use,
Kerberos should be among the first to evaluate.

The PKIX infrastructure provides functions that go beyond the need of se-
cure networking like digital signatures and non-repudiation support. It can be used
when security is important not only from the network management but from the
legal viewpoint too. Its usability in secure messaging makes PKIX an attractive
environment for business applications. The major drawback is that the PKI archi-
tecture still evolves, there are many competing standards and it is not clear which
one will be the winner on the long run. Also there are management problems that
were addressed only recently and there is no proven evidence that they will func-
tion as expected if the architecture will be used at country or even global level.

One of the most promising projects today is the integration of Kerberos or
similar authentication systems with the PKI architecture. Such an integration has
the promise to contain the good features of both world and to help overcome the
weaknesses of each by using techniques from the other. Such test systems are
already exist but the neccessary standardization processes and wide spread usage
are yet to come.

Note that there are work in the other direction too: there is a proposal to add

50

Comparison Authentication services

Kerberos support to TLS. TLS by default uses X.509 certificates for authentication.
The proposal suggests using Kerberos tickets instead of the certificates. This can
give authentication support to TLS in network environments that have Kerberos
installed but do not want to deploy PKI technologies due to their higher installation
and maintenance cost.

Given the range of already existing authentication systems and the speed they
evolve and new ones emerge, abstract interface and protocol layers like the GSS-
API and SASL play a very important role. Application developers can have the
feel of stability that the authentication system will not change under them and the
knowledge that their products will be usable in a wide range of security environ-
ments. System designers and administrators have the freedom of choosing the most
appropriate authentication system for a given environment without the restriction
that the applications they need to maintain do not support it.

51

Chapter 4

Case study

4.1 Background

The network environment of the Department of Informatics of the Eötvös Loránd
University is a good example as how different directory services change over time.
The department has several UNIX servers and a large number of individual work-
stations. The constantly growing set of services and userbase created the need for
efficient central management techniques where a small number of system admin-
istrators can manage a large number of users and computers.

Apart from the DNS which is used everywhere, the first directory service in
use was NIS in 1996. It was used on a Sun machine acting as the NIS master and
there was a couple of Linux machines acting as clients.

In 1998, the system administrators at that time decided to move from NIS to
NIS+ in order to take benefits from the improved security and performance of NIS+
over NIS. At that time NIS+ support was only available for Solaris so it was used
only on two Sun machines acting as central public servers for the Department.
Later in this year I began for testing NIS+ on Linux machines (NIS+ support for
Linux was rudimentary and required the use of unstable versions of several critical
software). NIS+ support for Linux was stabilized after a couple months of time.

For administering our NIS+ environment several tools were created. The lat-
est and most complex was created by me as my big program in 1999. It featured
a form-based interface for adding new users, changing their account status and
checking the validity of accounts using a central database called ELTEdb managed
at the Centre of Information Technology of the University. My management pro-
gram used non-standard NIS+ tables for storing additional information about the
users.

As the number of students grew at a high rate concerns arose in the year of 2000
that a more powerful directory service is needed. NIS+ functioned well but it was
hard to use for general purposes so I began searching for a new directory service
which could provide better integration with applications and future services. These
planned services included white pages for e-mail addresses, electronic phone book
and PKI certificate repository.

52

Case study Background

Also, the security provided by NIS+ was becoming insufficient as the comput-
ing power of workstations grew. Sun introduced new, stronger security modules
for NIS+ in the Solaris 7 operating system but enabling stronger security on the
servers would made them incompatible with old clients and there was no Linux
support for the new security modules. At the end of 1999 the Department decided
to purchase a new central server which was intended to replace the old and over-
loaded Sun server. The new machine turned to be an IBM H70 running AIX, and
AIX had no support for strong NIS+ security either.

4.2 The choice

Considering the problems mentioned in the previous section I started to search for
a new directory and authentication system to be used at the Department. The main
aspects of the search were:

Compatibility. The authentication and the directory service should work together
seamlessly. We did not need a separate authentication and a separate direc-
tory service, we needed the system where the two are highly integrated.

Scalability. The Department already had about 2000 users and this number was
expected to grow. Both the directory and authentication system should be
able to deal with this amount of data. Also, there were plans to use the
same directory and authentication service in public laboratories so the sys-
tem should be able to deal with a couple hundred client machines.

Reliability. Since several very important services like e-mail delivery or Web ser-
vice are dependant on the directory service it should be robust and fail safe.
It should be able to run distributed on multiple hosts and provide automatic
failover if one of the server machines goes down.

Security. As mentioned above we were planning to use the directory and authenti-
cation system in public laboratories where the security of individual hosts is
considered low. The authentication service should provide protection about
network sniffing. Also, the possibility of inserting backdoors to the operating
system used on laboratory machines should be considered; the authentication
system should be able to limit the consequences of such hostile actions.

Single sign-on. It was desired that the authentication service should provide sup-
port for single sign-on as it is a convinient feature for users.

Application support. As was mentioned above there were plans for services re-
lying on the availability of a directory service. So the system to be choosen
should be easy to integrate with other applications.

Support for other platforms. Although we were thinking about supporting only
3 flavors of UNIX-like operating systems (namely AIX, Linux and Solaris)

53

Case study The choice

the directory and authentication system should provide chances for support-
ing Windows machines later.

Open source implementation.Due to the high costs of the new central server it
was unlikely that the Department would spend money on either an authenti-
cation or directory service in the near future no matter how many new fea-
tures would it offer. Linux support for commercial systems is often limited
and requires the use of specific kernel or C library versions. Commercial
systems may not support other architectures which can be a problem if we
want to move to a different platform in the future. Also I was expecting var-
ious problems during the implementation phase and closed source software
has the big problem that good support is usually available at a high cost only.
These reasons together meant that commercial software was not the way to
go, an open source solution was needed for both the directory and for the
authentication service.

In the case of the directory service the selection was easy. Looking at the
available solutions LDAP was the only one that provided all the functionality we
needed. There were an open-source implementation called OpenLDAP that pro-
vided the following features:

• Being open source means that OpenLDAP can be built on nearly all recent
UNIX-like operating systems. This gives independence from the platforms
used at the moment.

• LDAP databases was designed to contain a very large number of entries.
Installations with about 100,000 entries were demonstrated to be working
which ensured that the Department won’t outgrow OpenLDAP in the fore-
seeable future.

• OpenLDAP has replication support so fail-safe service can be provided. The
OpenLDAP libraries provide automatic failover if one of the servers goes
down.

• OpenLDAP has an access control checking system which can be used to
provide fine-grained access control over the information stored in the DIT.
Using ACLs it is possible to enable users to manage some attributes of their
entries by their own while other entries are editable (or even visible) only by
a group of administrators. The administrator group itself can be defined in
the DIT which makes administration easy if people come or go.

• With the release of Windows 2000 with ActiveDirectory support there is a
chance that Windows systems will be able to use the OpenLDAP directory.
Currently there are unresolved issues created by Microsoft by abusing the
existing standards but they might be resolvable in the future.

54

Case study The choice

• As LDAP becoming more and more popular there are several applications
that can benefit from it. These applications involve e-mail systems (both
for mail delivery software and for address book service for user agents),
Netscape roaming profile support, PKI certificate repository and so on.

Of course OpenLDAP has its own limitations which must also be noted:

• The stable version of OpenLDAP supports read-only replication only. There
is experimental support for read-write (or multimaster) replication but it is
not considered stable yet. That means that the current implementation has a
single point of failure but it may be removed in the near future.

• ACLs are good, but especially the evaluation of group ACLs can be slow. If
the load on the LDAP server increases this issue will need to be addressed.
Fortunately, the open source nature of the code makes it easy to perform
modifications to speed up the ACL evaluation code.

In the case of authentication systems, two systems had the features we needed:
PKI and Kerberos. Other systems like RADIUS did not provide the level of secu-
rity and integration that I needed.

Kerberos was designed specifically for the purpose which I wanted to use it.
PKI had several problems: first, there are multiple competing standards and it is
not clear which one will have the most support in the future. The handling of
certificates in a PKI architecture is hard and we did not have a good solution for
it. And the biggest problem was that PKI is hard to integrate in low-level services
such as UNIX login. These problems resulted in choosing Kerberos instead of PKI.

As for the Kerberos implementation, there were two choices: the original ref-
erence implementation made by MIT or the European Heimdal implementation.
Since at the time of the investigation US export restrictions on crypto software
were still in effect Heimdal was choosen.

The features that Kerberos provides:

• It integrates cleanly with OpenLDAP via the SASL/GSSAPI authentication
mechanism.

• Kerberos has been proven to support several thousand users. Kerberos au-
thentication servers can be replicated to provide failover and load balancing.

• Kerberos provides adequate security for authentication. The GSSAPI can be
used by applications to provide integrity and confidentality support.

• Single sign-on is provided by the protocol by using TGTs.

• Many protocols and applications support GSSAPI authentication which in
turn means they can be used with Kerberos.

Problems with Kerberos:

55

Case study The choice

• Heimdal has read-only replication only which introduces a single point of
failure.

• [RFC1510] explicitly states that Kerberos does not protect from dictionary
attack. In order to be secure one has to use strong passwords which is a
problem among users. This problem might be solved by adding SRP support
to Heimdal.

4.3 Implementation and migration problems

Choosing OpenLDAP and Heimdal to be used as directory and authentication ser-
vices did not mean that everything was solved. These services needed to be tested
and integrated with already existing applications and operating systems. Also, the
existing user database held in NIS+ should have been migrated to LDAP.

I began working on these problems at the beginning of year 2000. At that time
OpenLDAP had problems with SASL encryption support: the code responsible
for this was a complete mess. I began working on it and came up with a general
transport API layer that supported both SASL and/or SSL encryption of data sent
over the network. This project lasted for about three months when my changes was
accepted and applied to the mainstream version.

Parallel to the coding I began working on a schema that would be used later
to represent the users’ data. The attributes related to standard UNIX information
like /etc/passwd was the easy part as they were covered by [RFC2307]. However
new attributes were needed for information specific to my management software
used for administering users with NIS+. New attributes needed to be defined for
student or employment IDs, account creation date, creator of an account, person
responsible for an account, account status and so on. Other attributes were needed
to provide support for e-mail routing. Currently there are a total of 12 attribute
types and 3 object classes defined over the standard ones.

For Solaris and Linux, integrating LDAP with the operating system was rel-
atively easy. These operating systems have a feature calledName Service Switch
(NSS) which enables the dynamic loading of arbitrary modules to be used as infor-
mation sources for name service calls. Both operating systems support traditional
/etc files, NIS and NIS+ using the NSS interface. Padl Software has created an
open source module called NSS_LDAP which can interface with NSS and provide
name service using an LDAP directory as a database.

The problematic operating system was AIX which was used by the yet-to-buy
new central server. AIX had no NSS support but it had a somewhat similar inter-
face called Information Retrieval System (IRS). Unfortunately this interface is not
completely exported by the operating system: there are support for all databases
except the password and the group data. To resolve user and group names, AIX
uses a proprietary interface called Security Methods which was not documented by
IBM. To get around this, I created a simple translator that could use an IRS module

56

Case study Implementation and migration problems

to retrieve password and group information while acting as a NIS server to the host
operating system. Since AIX supported NIS, using this translator it became possi-
ble to integrate AIX and LDAP. After the translator was ready, IBM announced the
new major version of AIX called AIX5L and made documentation for it available
at the IBM web site. Surprisingly the AIX5L documentation had some information
about the previously undocumented naming service interface which made it pos-
sible to create a native AIX implementation of NSS_LDAP. These changes were
immediately accepted to the upstream version and the NIS translator I have written
before became obsolote.

Kerberos was not so problematic. However, since I did not consider DES strong
enough and 3DES is slow, I have added Blowfish support to Heimdal. For services
needing traditional password authentication, I used a PAM module. AIX did not
have PAM support by default, but I managed to port the Linux PAM libraries to
AIX. The AIX Security Methods interface supports adding new authentication sys-
tems so it would be possible to create a Kerberos module for it and use it instead
of PAM, but there are a lot more applications supporting PAM than applications
supporting the AIX method.

OpenSSH is used in order to enable secure login to AIX. The original OpenSSH
does only support Kerberos IV and not Kerberos V, but I found a patch for an ear-
lier OpenSSH version that could be still applied with some minor modifications.
The patch supported the old 1.x SSH protocol however; later I added Kerberos sup-
port for the 2.x SSH protocol. In March 2001, the IETF published a draft for using
GSSAPI with the SSH protocol; I plan to check the availability of patches adding
GSSAPI support to OpenSSH in the near future.

Migrating data from NIS+ to LDAP was the easy part. I have written a small
Perl script that extracts all data from NIS+ and outputs it in LDIF (LDAP Data
Interchange Format) format that could directly fed to the OpenLDAP server. The
problematic part was the case of passwords since NIS+ and Kerberos uses com-
pletely different encodings. For these reason I created a small program on a server
still running NIS+ that could authenticate a user using her NIS+ password and if
that was successful, create her Kerberos principal with a password she specified.
So every user could log in to the server using NIS+ and set her own Kerberos
password which in turn could be used to log in to the new server.

4.4 New services

The first service to make advanced use of LDAP was the e-mail system. Most of the
development were done by my colleague called Péter Kelemen. By using an LDAP
attribute of users where they wish their mail should be sent, the e-mail system was
successfully separated from the home directory service. Before the utilization of
LDAP the e-mail service was dependant on the home directory service because
mail forwarding information was held in users’ directories in traditional.forward
files. Since I also switched to using an IMAP server instead of local delivery to

57

Case study New services

traditional mailboxes under/var/mail, it is now possible to relocate the entire
mail service without users even noticing it if performance or other issues make it
neccessary.

Combining LDAP with the e-mail delivery system has other advantages: us-
ing the advanced search capabilities of LDAP support ofFull.Name@inf.elte.hu
style e-mail addresses became possible together with theuser@inf.elte.hu style
addresses used so far. This feature is not yet official because a technique for re-
solving conflicting full names still has to be created.

The next service to move was the Web. Migrating web content from the old
server to the new one had some difficulties because of the different ACL syntaxes
and semantics of Solaris and AIX. However, a mapping between the two semantics
got created by Sándor Bedő and the transition took place. The new Web server
uses the same technique as the e-mail system to locate users’ home pages. It has
the same capability to supporthttp://people.inf.elte.hu/Full.Namestyle URLs but
due to the same name conflict problem it is not yet enabled.

I have planned to provide Netscape roaming profile support for all users, but
currently this project is suspended because Netscape seems uncapable to use an
SSL-protected connection when talking to the LDAP server, and sending pass-
words over the network in cleartext is not a good idea. I hope that the Mozilla
project will solve this issue somewhere in the near future.

E-mail clients with LDAP support can already use the directory for white pages
information. The webmail system I deployed can also use LDAP.

There are other services which were planned but not yet implemented. These
include the creation of a certificate repository for our users. With some effort,
it could be used to provide digital signature service for the Department that is
compatible with the recently accepted Hungarian law about digital signatures.

58

Bibliography

[X.500] The Directory: Overview of Concepts, Models, and Services
ITU-T Recommendation X.500
ISO/IEC 9594-1

[X.509] The Directory: Authentication Framework
ITU-T Recommendation X.509
ISO/IEC 9594-8

[CHERYL] Cheryl Walton:LDAP and NDS.
Netware Connection, November 1999, pp. 18-30
http://www.nwconnection.com/nov.99/ldapn9/index.html

[CHADWICK] David Chadwick:Understanding X.500 - The Directory
Chapman & Hall
ISBN 1 85 0322 813
http://www.salford.ac.uk/its024/Version.Web/Contents.htm

[SOLNAM] Solaris Naming Administration Guide
806-1387-10
Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, CA,
94303, U.S.A.

[SOLGSS] GSS-API Programming Guide
806-3814-10
Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, CA,
94303-4900, U.S.A.

[KRBPLAN] S. Miller, C. Neuman, J. Schiller and J. Saltzer:"Section E.2.1:
Kerberos Authentication and Authorization System"
M.I.T. Project Athena, Cambridge, Massachusetts
December 21, 1987.

[NEUTSO] B. Clifford Neumann and Theodore Ts’o:Kerberos: an Authen-
tication Service for Computer Networks
IEEE Communications Magazine, Vol. 32 (9) pp. 33-38.

59

http://www.nwconnection.com/nov.99/ldapn9/index.html
http://www.salford.ac.uk/its024/Version.Web/Contents.htm

Bibliography

September 1994.
ISSN 0163-6804

[BELMER] S. M. Bellovin and M. Merritt:Limitations of the Kerberos Au-
thenication System
ACM Computer Communication Review, Vol. 20 (5) pp. 119-
132.
October 1990.
ISSN 0146-4833

[TWU] Thomas Wu:A Real-World Analysis of Kerberos Password Se-
curity
Proceedings of the 1999 Internet Society Network and Dis-
tributed System Security Symposium
February 1999.

[TWUSRP] Thomas Wu:The Secure Remote Password Protocol
Proceedings of the 1998 Internet Society Network and Dis-
tributed System Security Symposium, pp. 97-111.
March 1998.

[KNT] J. T. Kohl, B. C. Neuman, and T. Y. T’so:The evolution of the
Kerberos authentication system
Distributed Open Systems, pp. 78-94.
IEEE Computer Society Press, 1994.
ISBN 0-8186-4292-0

[NS] R. M. Needham and M. D. Schroeder:Using Encryption for Au-
thentication in Large Networks of Computers
Communications of the ACM, Vol. 21 (12), pp. 993-999.
December 1978.
ISSN 0001-0782

[DS] Denning, D., and G. Sacco:Time stamps in Key Distribution
Protocols
Communications of the ACM, Vol. 24 (8), pp. 533-536.
August 1981.
ISSN 0001-0782

[DH] W. Diffie and M. E. Hellman:New directions in cryptography.
IEEE Transactions on Information Theory, Vol. 22 (6), pp. 644-
654.
November 1976.
ISSN 0018-9448

[RSA] R. L. Rivest, A. Shamir, and L. Adleman:A method for obtaining
digital signatures and public key cryptosystems.

60

Bibliography

Communications of the ACM, Vol. 21 (2), pp. 120-126.
February 1978.
ISSN 0001-0782

[BS] Bruce Schneier:Applied Cryptography, 2nd Edition
John Wiley & Sons, 1995.
ISBN 0471117099

[FIPS186-2] Digital Signature Standard
Federal Information Processing Standards
Publication (FIPS PUB) 186-2
January 2000.

[FIPS180] Secure Hash Standard
Federal Information Processing Standards
Publication (FIPS PUB) 180-1
April 1995.

[ATHENA] George Champine, Daniel Geer, William Ruh:"Project Athena
as a Distributed Computer System"
IEEE Computer, Vol. 23 (9), pp. 40-51.
September 1990.
ISSN 0018-9162

[HESIOD] Stephen P. Dyer:The Hesiod Name Server
Proceedings of the USENIX Winter 1988 Technical Conference
USENIX Association, 1988.

[NISSEC] David K. Hess, David R. Safford, Udo W. Pooch:A Unix Net-
work Protocol Security Study: Network Information Service
Texas A&M University
ftp://ftp.cso.uiuc.edu/pub/security/coast/unix/sra/
TAMU/NIS_Paper.ps.gz

[KRBPKI] Matt Hynes:An Analysis of Distributed Network Security Ser-
vices: Kerberos and Public Key Infrastructure (PKI)
Cisco World
http://www.ciscoworldmagazine.com/webpapers/2001/
04_guardent.shtml April 2001.

[RFC951] RFC 951:BOOTSTRAP PROTOCOL (BOOTP)
September 1985.
http://www.ietf.org/rfc/rfc951.txt

[RFC1001] RFC 1001: PROTOCOL STANDARD FOR A NetBIOS SER-
VICE ON A TCP/UDP TRANSPORT: CONCEPTS AND
METHODS

61

http://www.ietf.org/rfc/rfc951.txt

Bibliography

March 1987.
http://www.ietf.org/rfc/rfc1001.txt

[RFC1034] RFC 1034:Domain names - concepts and facilities
November 1987.
http://www.ietf.org/rfc/rfc1034.txt

[RFC1035] RFC 1035:Domain names - implementation and specification
November 1987.
http://www.ietf.org/rfc/rfc1035.txt

[RFC1492] RFC 1492: An Access Control Protocol, Sometimes Called
TACACS
July 1993.
http://www.ietf.org/rfc/rfc1492.txt

[RFC1510] RFC 1510:The Kerberos Network Authentication Service (V5)
September 1993.
http://www.ietf.org/rfc/rfc1510.txt

[RFC1964] RFC1964:The Kerberos Version 5 GSS-API Mechanism.
June 1996.
http://www.ietf.org/rfc/rfc1964.txt

[RFC2131] RFC 2131:Dynamic Host Configuration Protocol
March 1997.
http://www.ietf.org/rfc/rfc2131.txt

[RFC2136] RFC 2136:Dynamic Updates in the Domain Name System (DNS
UPDATE)
April 1997.
http://www.ietf.org/rfc/rfc2136.txt

[RFC2222] RFC 2222:Simple Authentication and Security Layer (SASL)
October 1997.
http://www.ietf.org/rfc/rfc2222.txt

[RFC2251] RFC 2251:Lightweight Directory Access Protocol (v3)
December 1997.
http://www.ietf.org/rfc/rfc2251.txt

[RFC2252] RFC 2252: Lightweight Directory Access Protocol (v3): At-
tribute Syntax Definitions
December 1997.
http://www.ietf.org/rfc/rfc2252.txt

[RFC2255] RFC 2255:The LDAP URL format
December 1997.
http://www.ietf.org/rfc/rfc2255.txt

62

http://www.ietf.org/rfc/rfc1001.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1492.txt
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1964.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2252.txt
http://www.ietf.org/rfc/rfc2255.txt

Bibliography

[RFC2256] RFC 2256:A Summary of the X.500(96) User Schema for use
with LDAPv3
December 1997.
http://www.ietf.org/rfc/rfc2256.txt

[RFC2307] RFC 2307:An Approach for Using LDAP as a Network Infor-
mation Service
March 1998.
http://www.ietf.org/rfc/rfc2307.txt

[RFC2459] RFC 2459:Internet X.509 Public Key Infrastructure Certificate
and CRL Profile
January 1999.
http://www.ietf.org/rfc/rfc2459.txt

[RFC2560] RFC 2560:X.509 Internet Public Key Infrastructure: Online Cer-
tificate Status Protocol - OCSP
June 1999.
http://www.ietf.org/rfc/rfc2560.txt

[RFC2743] RFC 2743:Generic Security Service Application Program Inter-
face Version 2, Update 1
January 2000.
http://www.ietf.org/rfc/rfc2743.txt

[RFC2865] RFC2865: Remote Authentication Dial In User Service
(RADIUS)
June 2000.
http://www.ietf.org/rfc/rfc2865.txt

63

http://www.ietf.org/rfc/rfc2256.txt
http://www.ietf.org/rfc/rfc2307.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2865.txt

Index

Access Control List,seeACL
ACL, 32, 33, 54, 55, 58
ActiveDirectory, 20, 23, 27, 29, 30, 32,

33, 35, 46, 48, 49
algorithms

3DES, 43
CRC32, 43
DES, 31, 43
Diffie-Hellman key exchange,

30–32, 44
digest, 3, 32, 43, 44
DSA, 44
ECDSA, 44
IDEA, 43
MD2, 44
MD4, 43
MD5, 43, 44
Rijndael, 43
RSA, 44
Serpent, 43
SHA1, 43, 44
SHA256, 43
Twofish, 43

AS, 10, 11, 41
Athena, 7, 10, 34, 37
authentication, 2, 4, 5, 7, 10–14, 17, 19,

29–32
authentication server,seeAS
authorization, 2, 4, 10, 13, 32, 39, 40,

46, 47
availability, 24, 46

Bootp, 5, 17, 21, 25, 26, 28, 30, 31, 33,

34

CA, 11, 12, 38
CCITT, 8
certificate, 11
Certificate Authority,seeCA
Certificate Revocation List,seeCRL
confidentality, 3, 12, 44
CRL, 13, 38, 39

DAP, 9, 10, 19
DHCP, 5, 17, 21, 22, 25, 26, 28, 30, 31,

33, 34
DIB, 9
Directory Information Base,seeDIB
Directory Information Tree,seeDIT
Distinguished Name,seeDN
DIT, 9, 54
DN, 23
DNS, 6, 7, 18, 20, 22, 23, 26, 27, 29,

31, 32, 34, 36, 45, 52
domain, 18–20, 22, 26, 47
Domain Name System,seeDNS

encryption, 32, 40, 42
asymmetric, 3, 14, 44
symmetric, 3, 14, 41, 43

entry, 23

failover, 24, 25, 27, 46

GSSAPI, 5, 13–15, 32, 39–41, 47–51,
55, 57

64

Index

Hesiod, 7, 17, 18, 26, 29, 31, 32, 34
HOSTS.TXT, 6

IETF, 2, 7, 12, 39
integrity, 3, 12, 44
International Standards Organization,

seeISO
International Telecommunication

Union,seeITU-T
Internet Engineering Task Force,see

IETF
ISO, 8, 9
ITU-T, 8

Kerberos, 7, 10, 11, 13, 15, 29, 32,
37–43, 45–51, 55–57

LDAP, 9, 10, 17, 19, 20, 23, 27, 29, 32,
34–36, 38, 39, 54–58

LDIF, 57
Lightweight Directory Access Protocol,

seeLDAP

multimaster,seereplication, read-write
mutual authentication, 2, 43

name service, 1
Name Service Switch,seeNSS
namespace, 2

flat, 20, 21
hierarchical, 20, 22, 38
tree, 20, 22, 23

NBNS, 6
NDS, 10, 19, 23, 27, 29, 30, 32, 33, 35
NetBIOS, 6, 21, 25, 26, 28, 30
network information service, 1
NFS, 19
NIS, 7, 18, 19, 21, 22, 26, 29–34, 36, 52
NIS+, 7, 19, 22, 26, 29, 31, 32, 34, 35,

47, 52, 53, 56, 57
non-repudiation, 12, 40, 41, 44, 49, 50
NSS, 56

Online Certificate Status Protocol, 38
Open Systems Interconnection,seeOSI

OSI, 8, 9, 19

partition, 23, 27
PGP, 13
PKI, 11–13, 15, 36, 38–41, 43, 48–51
PKIX, 12, 13, 44, 46–50
principal, 2, 38, 39, 41, 47
public key cryptography,see

encryption, assymmetric
Public Key Infrastructure,seePKI

RADIUS, 14, 32, 39, 41, 45–50, 55
RDN, 23
realm, 38
Relative Distinguished Name,seeRDN
Remote Procedure Call,seeRPC
replication, 23, 27, 29

read-only, 24, 27, 55, 56
read-write, 24, 27, 55

Request For Comments,seeRFC
resource record, 22, 23
RFC, 2
RPC, 7, 30–32

AUTH_DES, 31, 47
RPCSEC_GSS, 32

S/MIME, 48, 49
SASL, 5, 14, 15, 32, 40, 47–51, 55, 56
scalability, 13, 16, 24, 26, 46
SDSI, 12
Secure Remote Password protocol,see

SRP, 43
Secure Socket Layer,seeSSL
SESAME, 13
session key, 11, 31, 32, 41
single point of failure, 24, 55, 56
SPKI, 12
SRP, 43, 56
SSL, 48, 49, 56, 58

TACACS+, 13, 39, 41, 45–50
TGS, 11, 42
TGT, 11, 42, 43, 55
ticket, 11, 41–43
Ticket Granting Server,seeTGS

65

Index

Ticket Granting Ticket,seeTGT
TLS, seeSSL

WINS, 6, 21, 25, 26, 28, 30, 33

X.500, 8–11, 19, 20, 23, 35, 36, 39
X.509, 11–13, 15, 32, 39, 44, 47, 49, 51

zone, 22, 23

66

	Contents
	Terms and Definitions
	Directory services
	Authentication and authorization services
	Example

	Tools
	Bootp, DHCP
	NetBIOS, WINS
	DNS, Hesiod
	NIS
	NIS+
	LDAP
	ActiveDirectory
	Novell Directory Service
	Kerberos
	Public Key Infrastructure
	TACACS+
	RADIUS
	GSSAPI
	SASL

	Comparison
	Objectives
	Directory services
	Design goals and basic principles
	Data model
	Robustness, availability, scalability
	Supported platforms
	Authentication, access control, security
	Administration
	Integration with applications
	Summary

	Authentication services
	Design goals and basic principles
	Quality of Service
	Underlying algorithms
	Scalability, availability
	Authorization
	Supported platforms
	Integration with applications
	Summary

	Case study
	Background
	The choice
	Implementation and migration problems
	New services

	Bibliography
	Index

